
TECHNICAL CORRESPONDENCE

On Iterative Constructs

DAVID LORGE PARNAS

Queen’s University

The wheel is repeatedly reinvented because it is a good idea. Perhaps Anson’s “A
Generalized Iterative Construct and Its Semantics” [l] confirms that “A Gener-
alized Control Structure and Its Formal Definition” [2], and the earlier “An
Alternative Control Structure and its Formal Definition” [3] presented good
ideas. However, there are several misstatements in [l] that should be corrected.

(1) As Anson points out, [2] contained definitions of constructs equivalent to
both DO TERM and DO UPON. However, he is incorrect when he suggests
that it emphasized DO TERM because of efficiency considerations. By
writing “There is a pragmatic justification for either definition! “, I made it
clear that that was not the reason for my choice. DO TERM has two, quite
different, advantages.

(a) DO TERM is more general. An implementation of DO TERM may, in
fact, be DO UPON if desired. Further, a programmer using DO TERM
can achieve the effects of DO UPON by choosing his guards accordingly.

(b) DO TERM, like Dijkstra’s do od, eases the verification of programs by
maintaining independence of guarded commands. The verification pro-
cedure for such constructs as do od and DO TERM is (1) verify that the
union of the guards is true in all states where the program will be invoked,
(2) verify that each guarded command, on its own, will do no wrong. For
DO UPON the second step is complicated by the need to consider
the terminating commands in the list when considering an iterating
command.

(2) Anson argues that the semantics of DO TERM are more complex. The minor
syntactic difference between his two definitions is a consequence of the
clumsiness of wp semantics. In the relational semantics used in [2], the
change from DO UPON to DO TERM meant the addition of one simple
definition.

(3) As Mills’ [4] has explained, programmers should not be deriving the seman-
tics of their programs from the text as Anson’s analysis suggests. We do not
write programs arbitrarily and then try to determine their semantics. Instead,

Author’s address: Department of Computing and Information Science, Queen’s University, Kingston,
Ontario, Canada K7L 3N6.
Permission to copy without fee all or part of this material is granted provided that the copies are not
made or distributed for direct commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by permission of the Association
for Computing Machinery. To copy otherwise, or to republish, requires a fee and/or specific
permission.
0 1990 ACM 0730-0301/90/0100-0139 $01.50

ACM Transactions on Programming Languages and Systems, Vol. 12, No. 1, January 1990, Pages 139-141.

http://crossmark.crossref.org/dialog/?doi=10.1145%2F77606.214517&domain=pdf&date_stamp=1990-01-03

140 - On Iterative Constructs

programmers should be verifying that the program they have written has the
semantics that they set out to achieve. Fortunately, this verification is much
easier than the inductive derivation of semantics described in [l]. As ex-
plained above, verification is easier for DO TERM than DO UPON.

(4) Anson suggests that a stronger weakest-precondition “seems to imply a
weaker construct.” On the contrary, DO TERM can describe algorithms that
cannot be described with DO UPON.

(5) Anson also suggests that in DO TERM termination is more difficult to
obtain. Programmers can obtain the behavior that they want in either. With
DO TERM the guards may be longer. For those that want to reduce the
length of the guards, [2] offered a third alternative, a deterministic construct.
This construct forced left-to-right consideration of the commands. This
alternative has the verification disadvantages of DO UPON (the guarded
command semantics are not independent), but, by putting the terminating
commands first, one can achieve everything that Anson values in DO UPON.
In fact, with the deterministic construct, one can often achieve guards that
are shorter than they would be with DO UPON. DO UPON seems to be a
compromise between DO TERM and the deterministic construct, a compro-
mise with some of the disadvantages of both extremes and the advantages
of neither.

(6) Anson has not provided the full semantics of the constructs in question. It
has been known for many years (e.g., Majster [5]) that wp alone does not
define the semantics of a program. Two programs with the same wp can
differ in their behavior in important ways. To provide a complete semantics
of the constructs one must define both wp and wlp. That was one of the
reasons for using a relational semantics in [2] and [3].

When I wrote [2] I deliberately chose DO TERM over DO UPON because
I felt that the simplicity of verification compensated for the longer guards. I
also valued the ability to describe the algorithms that cannot be described
with DO UPON. I continue to prefer the syntax used in [2]. I believe that
readers who consider the facts above will make the same choice.

The discussion of these issues is made a bit academic by the four-year delay
between Anson’s submission of his paper (which apparently coincided with the
publication of [2]) and the publication of [l]. In that time a generalization of
both schemes has been published as a Technical Report [6] and has been
submitted for publication. In this generalization the decision about whether a
command is iterating or terminating can be made during execution, and the
semantics must be that of DO TERM. Further generalizations make the seman-
tics of the constructs more practical, since side-effects are accurately treated in
all cases. A method for reducing the length of guards and avoiding duplicated
subexpressions is also provided.

REFERENCES

1. ANSON, E. A generalized iterative construct and its semantics. ACM Trans. Program. Lung.
Syst. 9,4 (Oct. 1987), 567-581.

ACM Transactions on Programming Languages and Systems, Vol. 12, No. 1, January 1990.

On iterative Constructs - 141

2. PARNAS, D. L. A generalized control structure and its formal definition. Commun. ACM 26,
8 (Aug. 1983).

3. PARNAS, D. L. An alternative control structure and its formal definition. IBM Tech. Rep.
TR FSD-81-0012, IBM Corp., Bethesda, Md., Apr. 1981.

4. MILLS, H. D. The new math of computer programming. Conmun. ACM 18, 1 (Jan. 1975).
5. MAJSTER-CEDERBAUM. A simple relation between relational and predicate transformer seman-

tics for non deterministic programs. Znf. Process. Lett. 1 I, 4, 5 (Dec. 12, 1980).
6. PARNAS, D. L. Less restrictive constructs for structured programs. Tech. Rep., Queen’s Univ.,

Kingston, Ont., Sept. 1986.

ACM Transactions on Programming Languages and Systems, Vol. 12, No. 1, January 1990.

