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1. INTRODUCTION 

Representing the semantics of programs (and program parts) as predicate trans- 
formers is useful, not only for proving properties of programs, but for aiding their 
synthesis as well [2]. When coupled with a powerful set of statements composed 
of guarded commands, the formalism can be extremely useful. 

Guarded statement forms, described by Dijkstra [2], include a purely selective 
form (IF) and a purely iterative form (DO). A new form (DOUpOn) subsumes the 
iterative and selective forms. It provides more expressive power and simplifies 
both the synthesis and the proofs of algorithms. Furthermore, it reduces by one 
the number of distinct control structures required for programming. 

Although a syntactic form is introduced for DOUpOn, it is not to be construed 
as proposed syntax for a practical programming language. Indeed, the form used 
is probably not particularly useful for programming. (It is nevertheless useful for 
discussing semantics.) The intent of this paper is to introduce a new semantic 
form, which can be used to simplify future languages, and to give new insight 
into the logic of programming. 
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Almost simultaneously with the original submission of this paper, Parnas [7] 
proposed a construct that is semantically very similar to DOUpOn. However, it is 
different in a crucial way. Ironically, Parnas considered a form semantically 
equivalent with DOUpOn, but rejected it for supposed efficiency reasons. Conse- 
quently, this paper now includes a discussion of Parnas’s construct and a detailed 
comparison of the semantic differences between the two forms. It is shown that 
DOUpOn is much simpler semantically and can lead to more efficient implemen- 
tations than Parnas’s construct. 

Section 2 informally introduces Doupon, and Section 3 gives a simple example 
of its usefulness. Section 4 formally defines the predicate transformer for DOUpOn. 

Section 5 demonstrates two theorems, which indicate unusual flexibility of the 
construct in the design of algorithms, and Section 6 illustrates this flexibility 
with an example. Section 7 demonstrates some theorems related to optimizing 
transformations, unique to DOUpOn, and Section 8 applies some of those theorems 
to solve a programming problem. 

2. SYNTAX AND INFORMAL SEMANTICS 
OF A NEW ITERATIVE CONSTRUCT 

The statement forms defined by Dijkstra [2] include the IF and DO, briefly 
described as follows: 

IF Ql+ Ml Cl Q2 + Mz 0.. . 0 Qn + M, FI 

and 

(IF) 

DOP,~L,oP~~L,o...oP,~L,OD (DO) 

In these statements, the Pi and Qi are predicates defined on the state space of 
the program and are known as guards. The Li and Mi are statements of any kind. 

Informally, IF executes by first determining which of the guards are true. If 
one or more guards are true, one of the true guards (Qi) is selected arbitrarily 
and the corresponding statement (Mi) is executed. If none of the guards is true, 
the statement fails. In the case where more than one guard is true, the statement 
is nondeterministic. Note that the guard selection is not necessarily random. The 
nondeterminism simply implies that the programmer cannot know which true 
guard will be chosen. For example, an implementation which chooses the first 
true guard found would be as valid as a totally random choice. 

The DO statement executes in a manner similar to the IF, in that any one of 
the true guards may cause its corresponding statement to be executed. However, 
if this occurs, the entire statement is then executed again. When no guard is 
true, the statement terminates normally. Again, if more than one of the guards 
can be true at any given time, the statement is nondeterministic. 

The new statement form, Doupon, combines the features of IF and DO: 

DO PI ---, Ll 0 Pz + Lz 0 . . . cl P, + L, 
UPON Ql+ Ml 0 Qz + Mz 0 . . . Cl Qn ---* M, OD (DOUpOn) 

As a notational convenience throughout this paper, we consistently use P and 
Q, and L and M, to refer to the iterative and selective sets of guards and 
statements, respectively. We also use IFP to represent an IF statement composed 
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of the P guards, whether taken from a DO or Doupon. We use IFQ to represent 
an IF statement composed of the Q guards from a DOUpOn. 

Informally, the Doupon statement executes as follows: If any of the guards Qi 
are true, execution is as in IFQ. That is, the statement terminates after executing 
one of the guarded statements from the UPON clause. Otherwise, if one or more 
of the guards Pi are true, a corresponding statement Li is executed and the entire 
statement repeats. Accordingly, the guards Pi are called iterative guards, and the 
guards Qi are called the terminating guards. If no guard is true, the statement 
fails. 

Unlike the DO statement, DOUpOn can terminate even if some iterative guards 
are true. The termination condition is stated positively, rather than negatively 
as in DO. Furthermore, when termination occurs, an action is immediately 
selected that is appropriate to the particular reason for termination. These 
properties, rather than the combination of forms in itself, result in the special 
usefulness of DOUpOn. 

Parnas [7] proposes a construct similar to DOUpOn. Although he uses different 
syntax and calls the structure IT-TI, it is given a similar syntax to Doupon here, 
to avoid issues irrelevant to semantics. It will be called DOterm here, by analogy 
to DOUpOn. It thus looks like this: 

DO P1 + Ll 0 Pz + LB II . . . 0 P, + L, 
TERMQ~--*M~~Q~~M~~...OQ,~M,OD (DOterm) 

A “term” clause is used here, instead of “upon,” to signify a different interpre- 
tation of the termination guards. Parnas allows that execution may terminate if 
one of the Q guards is true, but if one of the P guards is also true, execution may 
either continue or terminate, nondeterministically. Unlike DOUpOn, an iterative 
guard may be chosen regardless of the truth of the termination guards. 

Parnas argues that such a form would be more efficient than DOUpOn, since it 
is not necessary to evaluate all the termination guards of DOterm in order to 
continue iteration. In a highly parallel processor, this might sometimes be an 
advantage. However, it also increases the nondeterminism of the iteration, 
possibly causing it to continue long after it could have terminated in a desirable 
state. It seems prudent (at least in some cases) to terminate as soon as a 
termination guard indicates that termination is valid. 

It is particularly worth noticing that, in any sequential implementation, the 
guards must be evaluated in some order. In such a case, the supposed efficiency 
of Doterm is not realized, but its limitations are. Of course, Doterm can be 
implemented with termination guards evaluated first. But, in such an implemen- 
tation, its implementation is indistinguishable from Doupon, while the semantic 
limitations remain. As is shown in Section 4, the semantics of DOUpOn would 
generally be preferred. 

3. A SIMPLE EXAMPLE 

A common occurrence in programming is that, when an iteration terminates, one 
of two or more conditions is known to hold, and a different action is required for 
each. A simple example is a sequential search of a small array, with different 
actions taken for each of the two (or more) keys, or for failure. 
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The following program fragment searches the first n elements of an array 
named “list” for the first element containing either of two specified keys. If it 
finds either key, a procedure is executed, which depends on which key is found. 
If neither key is in the array, a message to that effect is printed. To simplify the 
algorithm, we assume the array is initialized so that l&[n + l] contains some 
value that is not equal to either key. Although this assumption is not necessary, 
it helps us to avoid distracting details. 

i := 1; 
DOi5n + i := i + 1 
UPON li.st[i] = Key1 + TypeOneAction(Key1, i) 

Cl li.st[i] = Key!2 + TypeTwoAction(Key2, i) 
lli>n -+ print(“Search Failed”) 

OD 

The reader may have noticed that, since i > n causes termination, the iteration 
guard (i I n) can be weakened to true, without affecting the correctness of the 
program. The guard is given in its present form, as kind of documentation of the 
fact that only n + 1 elements are guaranteed to be in the array, and thus it is 
meaningless (incorrect) to advance i past that value. In Section 7, we discuss in 
more detail the conditions under which guards may be weakened or strengthened. 
In particular, the corollary to Theorem 4 applies to the present example. 

At this point, it is worth observing that, with conventional iterative statements, 
this program is somewhat more complicated. An equivalent solution, using DO 

and IF, follows: 

i := 1; 
DO (i I n) and (li.st[i] # Keyl) and (l&t[i] # Key2) + i := i + 1 OD; 
IF li.st[i] = Key1 + TypeOneAction(Key1, i) 

i y;[iJ = Key2 + TypeTwoAction(Key2, i) 
+ prmt(“Search Failed”) 

FI 

This program requires an extra evaluation of the predicates upon termination. 
Many programmers find this objectionable for esthetic reasons as well as for 
reasons of efficiency. It also tends to complicate proofs of correctness. It is worth 
noting that none of the guards can be weakened in this version. A similar 
structure would be required by DObXIq in which IF is replaced by TERM. The 
simpler structure, used for DOUpOD, would not generally terminate correctly if 
Doterm semantics were applied, since iteration could continue after a key is 
found. 

This example is one of a large class of problems, which require either reevalu- 
ation of predicates or the setting of flags, in order to solve the problem with 
conventional statement forms. This fact has led others to propose alternative 
loop forms, with exits at arbitrary points [l, 3, 81. However, the semantics of 
such multiexit loops are difficult to define accurately, since they suffer from a 
similarity to the goto. Doupon solves the problem cleanly, while only slightly 
restricting the ability to exit from a loop. 

The difficulty of defining the semantics of goto is fully explained in [6] and 
arises from the fact that execution does not pass to the next statement of the 
program. Hoare-type logics, as well as weakest precondition semantics, implicitly 
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assume that control passes from each statement directly to the next. goto violates 
this assumption, leading to a breakdown of the reasoning systems. Multiexit 
loops (and exception mechanisms) have a similar anomaly at the exit points. 
Although the Hoare-type semantics of a single multiexit loop may be defined 
adequately in some cases, nested structures cause problems. 

As shown in the next section, the semantics of DOUpOn are well defined and 
are as simple as those for DO and IF. Proofs of correctness may even be simpler 
in many cases. 

4. FORMAL SEMANTICS OF THE ITERATIVE CONSTRUCT 

The semantics of DOUpOn are described by its weakest precondition function, in 
a manner similar to that used by Dijkstra [2] to define IF and DO. 

For any statement S, and predicate R, the function wp(S, R) yields the weakest 
precondition predicate guaranteeing that S will terminate normally, in a state 
satisfying R. DOUpOn is a statement of the form 

DO P, + L, 0 Pz + Lz 0 . . . 0 P, -+ L, 
UPONQ~~M~OQ~~M~O...O&,~M,OD 

As a notational convenience, we define PP = (3j:l I j I m: Pi), and QQ = 
(3j:l 5 j 5 n: Q), to refer to combinations of the iterative and terminating 
guards, respectively. 

As defined in [2, p. 341, Dijkstra’s IF statement is of the form 

IFQ~+M~IJQ~+M~O...IIQ~+M~FI 

and is described by 

Wp(IF, R) = QQ and (k/j:1 5.j 5 n: Qj * w(Mjy R)). 

The DOUpOn statement is described recursively, using a function Hk(Doupon, 
R), which is the weakest precondition guaranteeing that DOUpOn terminates in k 
or fewer iterations, yielding a stats which satisfies the predicate R. Since Doupon 
terminates immediately if and only if one or more of the Q guards is true, we 
have 

Ho(Doupon, R) = ~~(IFQ, R). 

Since each successive iteration reduces by one the limit implied by Hk, it 
follows that Hk(Doupon, R) is true if and only if execution of any one of the P 
guarded statements yields a state satisfying H~--l(Doupon, R), or if the statement 
terminates immediately. Therefore, for any tZ > 0, 

&(noupon, R) = Wp(IFp, Hk--l(DOUpOn, R)) or R,,(noupon, R) 

Given this definition, we define 

Wp(DOUpOn, R) = (3k:k 2 0: &(DOupon, R)) 

This definition is essentially different from that of DO [2, p. 351, only in the 
definition of Ho. For DO, H&DO, R) = (R and non PP). DOUpOn is thus slightly 
more complex than Do because it also includes the equivalent of IF. However, in 
those cases where the DO would be followed by an IF, DOUpOn is actually simpler 
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in the aggregate. Where the subsequent IF is not needed, Doupon reduces to 

DO P1 + L* 0 Pz + Lz 0 . . . II P, + L, 
UPON non PP + skip 
OD 

which is semantically identical with DO. In an actual programming language, it 
would probably be useful to introduce syntactic sugar for the phrase non PP. In 
this context, the value is trivial to compute, once all the Pi have been computed. 

Note, also, that a Doupon statement with an empty iterative part is equivalent 
with IF. Since DO and IF are degenerate forms of DOUpOn, the semantics of 
DOUpOII need never be more complex than for DO and IF. Indeed, they are often 
simpler. 

On the other hand, the semantics of Doterm are considerably more complex. 
Parnas [7] describes the semantics of his construct, using set theory. Here, the 
equivalent weakest precondition semantics are given, to facilitate comparison of 
Doterm with DOUpOn. 

Since the iterative part of Doterm may continue whenever any P guards are 
true, termination is assured only when all are false. This introduces additional 
complexity into the base of the recursive definition, which thus becomes 

&(noterm, R) = non PP and Wp(IFq, R). 

For lz > 1, the Hk expression describes iteration for the P guards and termi- 
nation for the Q guards. We thus obtain 

&(ooterm, R) = &(Doterm, R) or ((PP or QQ) and (PP + wp(IFp, Hk-l(noterm, R)) 
and (QQ * W(IFQ, R)) 

However, since Ho + QQ, this may be simplified to 

&(noterm, R) = (PP or QQ) and (PP + wp(IFp, Hk-l(ooterm, R))) and (QQ * 
W(IFQ, RI). 

The most obvious consequence of this is that weakest precondition expressions 
involving DOtt?rm are intrinsically more difficult to evaluate than are expressions 
involving DOUpOn. Less obvious is the fact that the weakest precondition for 
Doterm is much stronger than for Doupon, which seems to imply a less powerful 
construct. Indeed, Parnas [7] alludes to the fact that his construct makes 
termination more difficult to obtain. 

5. THE BASIC THEOREMS FOR DOupon 

The weakest precondition, defined in Section 4, is not directly useful for pro- 
gramming. That is, a programmer does not generally determine the weakest 
precondition for each program part. Instead, he or she uses a bag of tricks, 
accumulated over years of experience, to determine the most useful way to 
implement a desired program. Each trick from the bag is, in effect, a theorem 
abut the behavior of some program schema. In order to deveIop such theorems 
in a disciplined manner, it is necessary to have methods that are readily 
applicable. 

This section demonstrates several theorems that apply to useful programming 
techniques. Additional theorems are given in Section 7. All theorems are given 
with informal proofs only. Indeed, what is given amounts to a sketch of each 
ACM Transactions on Programming Languages and Systems, Vol. 9, No. 4, October 1987. 



A Generalized Iterative Construct and Its Semantics 573 

proof, intended to suggest the plan for a more detailed proof. Such detailed proofs 
are left as exercises for the ambitious reader. 

Dijkstra’s basic theorem for the DO construct [2, p. 381 provides a useful way 
to demonstrate desired properties of DO or to discover a correct iterative algo- 
rithm. Given a predicate V (an invariant condition), and the knowledge that 
(V and PP) 4 wp(~~~, V), we can conclude that (V and wp(D0, true)) 4 wp(D0, 

V and non PP). Putting it another way: Given that (V and PP) =s. wp(IFp, V) 
and also that, for some predicate R, (V and non PP) + R, we may conclude 
(V and wp(~o, true)) + Wp(D0, R). That is, given the invariant condition, 
only termination need be demonstrated to prove total correctness. 

A similar result can be shown for Doupon. 

THEOREM 1. Given (V and non QQ) + w~(IF~, V), and (V and QQ) + 
wp(~~~, R), we may conclude (V and Wp(DOUpOn, true)) d Wp(DOUpOn, R). 

The proof is similar to Dijkstra’s proof for DO. The first antecedent guarantees 
that V is invariant within the iterative part of DOUpOn. The invariance of V, 
together with the second antecedent, guarantees that termination leads to R, 
since termination occurs if and only if QQ holds. Therefore, the conjunction of 
V with a guarantee of termination guarantees that Doupon will terminate in a 
state satisfying R. 

Another result follows for Doupon, which has no useful analog for DO or 
Doterm. 

THEOREM 2. Given V + w~(IF~, V), and (V and QQ) + w~(IF$, R), we may 
conclude (V and wp(Doupon, true)) + Wp(DOUpOn, R). 

This follows directly from Theorem 1 because the first antecedent is stronger. 

This result differs from Theorem 1 only because the first antecedent does not 
include non QQ. This implies a stronger invariant condition than Theorem 1 
because Theorem 2 allows the invariance to fail when QQ holds. 

Although Theorem 2 follows directly from Theorem 1, it is stated separately 
to emphasize an important property of DOUpOn. Notice that the equivalent 
theorem for Do (omitting the second antecedent, which cannot apply) would not 
be useful. Do requires the weaker form of invariance, as stated by Dijkstra. That 
is, since (for DO) wp(IFp, V) + PP, the antecedent V + wp(IFp, V) yields V * 
PP, and thus wp(D0, true) + non V. Thus, the conclusion becomes the vacuous 
statement (V and non V) + Wp(D0, R). Put more simply, the antecedent of 
Theorem 2, applied to DO, would guarantee that DO does not terminate. 

Doterm satisfies Theorem 1 as well, but termination is more difficult to 
establish. Furthermore, Theorem 2 is vacuous for Doterm, since the stronger 
antecedent rules out any guarantee of termination. The reasoning, in this case, 
follows that for DO. 

For some classes of problems, the stronger invariant allowed by Theorem 2 is 
useful, as is illustrated by the example in the next section. 

6. ANOTHER EXAMPLE 

Let us suppose that we are designing a memory management system. Let us 
futher suppose that the nature of the application is such that if, at any time, an 
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allocation request exceeds the amount of available memory, the application fails. 
This is realistic, for instance, in a transaction-oriented system, where (at the 
very least) a transaction must fail if it cannot obtain sufficient memory. 

A reasonable way to evaluate a design for our memory manager would be to 
simulate its behavior under a random sequence of requests supposed to represent 
a realistic load. To do this, we create a data structure that represents the memory 
map together with statistics about its history. Then we create a time-ordered 
even queue. Allocation and release events are simulated until a specified simulated 
time elapses, or an allocation fails. The results are reported. 

The following is a sketch of a program for the simulation, which assumes the 
following: Allocation requests arrive at random intervals and allocate random 
amounts of memory. Once allocated, a block of memory is released to the pool in 
a random amount of time. We will not concern ourselves here with distributions 
of the random functions, or even with the details of the allocation strategy or of 
desirable statistics. 

set memory map to a starting configuration; 
schedule first request; 
DO next event a request + simulate allocation; 

schedule release; 
schedule next allocation 

II next event a release + simulate release 
UPON next event a request > MenAvail+ print failure notice 

Cl next event has time > t + print statistics 
OD 

In this program skeleton, the iterative part is essentially a simulator of the 
memory management system. The termination guards simply indicate conditions 
under which the simulation is to be terminated. We are assuming here that the 
simulator is correct. For example, it must maintain a variable MemAuaiZ that 
reflects the remaining available simulated memory. Simulating an event is 
assumed to remove it from the event queue, and scheduling an event adds an 
event to the time-ordered queue, with time greater than the current simulated 
time. 

The invariant condition, maintained by the iteration, is simply a correspond- 
ence between the data and the state of the simulated system. In particular, the 
memory map represents the result of all simulated events, and the first event on 
the queue is the next that would occur in the real system. This condition is 
trivially established prior to entering Doupon, and the invariance follows, if the 
simulator is correct. Given this condition, either of the two termination conditions 
leads to the correct results, as can be easily seen. By Theorem 2, the program is 
partially correct. Termination (and thus total correctness) follows from the 
observation that simulated time is monotonically increasing [2, p. 411. 

What is most significant is that the use of either DO or Doterm for the 
simulation would require incorporation of the MemAuaiZ test and/or the time 
test into each of the iterative guards. This is not only cumbersome, but would be 
unnatural, since those conditions have nothing to do with the logic of the 
simulation itself. Furthermore, the tests would still have to be made again, upon 
termination, in order to produce the desired output. On the other hand, the 
Doupon version would allow the same iterative part to be used with different 
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termination conditions, which need not necessarily involve time or available 
memory. Such advantages, due to Doupon, would tend to increase with the overall 
complexity of a simulation. 

The DOUpOn thus shows its usefulness, by separating the concerns of invariance 
from those of termination. The example given is typical of a wide class of 
converging iterative algorithms. For example, a Taylor series, a Newton iteration, 
or a binary search of the real line, are potentially unending sequences. Neverthe- 
less, each converges toward a solution. It is semantically convenient to specify 
the (arbitrary) termination criterion separately from the iteration guards. DO 
would require the effective inclusion of the termination guards in each of the 
iterative guards, in order to assure termination. Doterm would also require 
inclusion of termination criteria in the iterative guards in order to prevent further 
iteration after convergence is achieved. In such cases, the supposed comparative 
efficiency of Doterm is not realized, because the termination criteria must still 
be computed on each iteration. 

7. SOME OPTIMIZATION RESULTS 

A useful strategy for discovering a good algorithm is as follows: First, devise a 
simple algorithm, known to be correct. Then apply safe transformations which 
improve its efficiency. Throughout these steps, a nondeterministic algorithm is 
at least notationally useful, since it does not unnecessarily constrain choices. 
The semantics of the iterative construct are consistent with many possible 
sequential implementations, one of which may be chosen based on efficiency 
considerations. This process is illustrated by the example in Section 8. 

DOUpOn offers unique optimization transformations, due to the fact that the 
iteration and termination conditions may be manipulated more or less indepen- 
dently. In particular, we show in this section that strengthening or weakening 
the guards is safe, under a wide range of conditions, and can lead to a better 
algorithm. 

THEOREM 3. If the correctness of a DOUpOn statement bus been established by 
means of Theorem 1 or Theorem 2, then strengthening one or more of the iterative 
guards preserves total correctness, provided that (V and non QQ) + PP still holds. 

Observe that the only antecedent of either theorem, affected by strengthening 
an iterative guard, is the first, namely, (V and non QQ) + wp(IFp, V). In 
particular, the value of wp(IFp, V) may be affected. However, wp(~~~, V) = 
(PP and (Vj:l 5 j 5 m: Pj + wp(Lj, V))). Strengthening any Pj cannot negate 
the truth of the second part, so only PP need be established again, as stated by 
the Theorem. 

Notice that, since wp(IFp, V) * PP, verifying the proviso of 
Theorem 3 generally amounts to less work than reestablishing the antecedent of 
Theorem 1. 

Notice also that this result applies to total correctness, as well as to partial 
correctness. That is, if Theorem 1 or 2 has established partial correctness, and 
other means have established termination, strengthening the iterative guards 
preserves termination under the conditions of Theorem 3. This is because such 
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strengthening of iterative guards can only reduce the nondeterminism of the 
execution. That is, any sequence of execution possible with the strengthened 
guards was also possible with the weaker guards. If such sequences were correct 
before, they still are. The proviso of Theorem 3 is sufficient to assure that at 
least one guard is true at the beginning of each iteration. 

Strengthening the iterative guards can lead to quicker convergence of an 
iteration, by effectively choosing (from the correct alternatives) a statement that 
makes more progress than the others. The fact that this can be done without 
affecting the termination condition is convenient. The DO statement does not 
have this property, since strengthening its guards can weaken its termination 
condition, allowing the DO to terminate in an incorrect state. 

COROLLARY. If the antecedents of Theorem 1 are satisfied, but termination of 
the DOUpOn cannot be established, strengthening one or more iterative guards may 
help establish total correctness. 

With the given conditions, strengthening of the guards preserves partial 
correctness. In many cases, the first form of an algorithm may fail to converge 
because one or more of the guards are too weak. That is, some steps may be 
possible that make no progress toward the desired state, or that actually diverge. 
It will often be sufficient simply to strengthen one or more guards to prevent 
this. In the extreme case, a guard may become false, and the corresponding 
statement may thus be removed. 

THEOREM 4. If the partial correctness of a DOUpOn statement has been estab- 
lished by means of Theorem 1 or Theorem 2, then weakening one or more of the 
iterative guards preserves partial correctness, provided that (V and non QQ) * 
wp(IFp, V) still holds. 

The proof of this theorem is similar to that for Theorem 3. Weakening an 
iterative guard only affects the first antecedent of Theorem 1 or 2, and so only 
that antecedent must be reestablished. However, since the guard is being weak- 
ened, the entire invariance must be demonstrated anew. Furthermore, weakening 
the guards also requires that termination be established anew, due to the converse 
of the Corollary to Theorem 3. 

It would at first appear that this theorem has very limited usefulness. Never- 
theless, it is useful, as illustrated in Section 8. In particular, speedup can occur 
due to simplification of the guards, and in many cases it is not difficult to show 
that the invariance and termination arguments used for the original algorithm 
apply as well to the new one. If only one guard is changed at a time, the following 
corollary may prove useful. 

COROLLARY. If the partial correctness of a Doupon statement has been estab- 
lished by means of Theorem 1 or Theorem 2, then weakening any iterative 
guard Pi to P[ (i.e., Pi + PE) preserves partial correctness, provided that (V and 
non QQ and PI) + wp(Li, V) still holds. A special case of this corollary is 
particularly useful. When a guard Pi is weakened to Pi, such that (P( 
and (V and non QQ)) = Pi, total correctness is preserved. 

Proof of this corollary is left to the reader. 
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THEOREM 5. If the correctness of a DOupon statement has been established by 
means of Theorem 1 or Theorem 2, then weakening one or more of the termination 
guards preserves total correctness, provided that (V and QQ) + wp(IFo, R) still 
hOldS. 

Weakening the termination guards affects both antecedents of Theorem 1, and 
only the second antecedent of Theorem 2. However, weakening QQ strengthens 
the left side of the implication in the first antecedent and cannot make that 
antecedent false. The second antecedent, in both cases, is simply the proviso of 
Theorem 5. 

COROLLARY. If the correctness of a DOUpOn statement has been established by 
means of Theorem 1 or Theorem 2, then weakening any termination guard Qi 
preserves total correctness, provided that (V and Qi) + wp(Mi, R) still holds. 

This follows directly from Theorem 5. Since weakening a termination guard 
also weakens QQ, it is necessary to show that the proviso of Theorem 5 still 
holds in the additional states allowed by the weakened QQ. However, only the 
weakened guard can be selected in those additional cases, and thus it is sufficient 
to show that the corresponding statement gives the desired result. This is the 
proviso of the corollary. 

Again, these results apply to total, as well as partial, correctness. Weakening 
QQ can cause earlier termination but cannot prevent termination already dem- 
onstrated. If it is discovered that the antecedents of these results apply, earlier 
termination is often obtained by making the transformation. This is because a 
weaker termination condition is easier to converge upon. 

THEOREM 6. If the partial correctness of a DOUpOn statement has been estab- 
lished by Theorem 1 or Theorem 2, then strengthening one or more termination 
guards Qi preserves partial correctness. 

Since the strengthened termination guards imply the original ones, the ante- 
cedents of Theorem 1 (or Theorem 2) still hold. 

Since it may be more difficult for the iterative part of the loop to satisfy the 
new (stronger) termination criterion QQ, new proof of termination is required. 
As with Theorem 4, this theorem may appear to have limited usefulness. However, 
it sometimes happens that the original termination argument applies as well to 
the strengthened requirements, and that the stronger criterion is more efficiently 
computed. Such a case is illustrated by the example in the next section. 

Generally, we have shown in this section that the guards of Doupon may be 
strengthened or weakened under a wide range of conditions, without affecting 
the correctness of a program. Similar properties do not usefully apply to DO or 
Doterm. Strengthening an iterative guard of a DO statement simultaneously 
weakens the termination criteria, and vice versa. Doterm suffers from a similar 
problem, though in a different way. Weakening an iterative guard may prevent 
termination of Doterm, whereas it cannot do so to DOUpOn. However, apart from 
termination problems, Doterm behaves similarly to DOUpOn, with respect to the 
transformations discussed in this section. 
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8. A THIRD EXAMPLE 

A problem, which often arises in computer graphics, may be stated as follows. 
Given a line in the plane, from point A = (&, YO) to B = (X,, Y1), draw that 
part of the line (if any) which passes through an upright rectangular window 
bounded by Xmin I x I X,, and Ymin 5 y 5 Y,,,. That is, if the line passes 
through the window, draw the part within the window; otherwise draw nothing. 

The simplest form of the algorithm that solves this problem is 

DO some part of line outside window -+ remove at least some of the part outside 
UPON line entirely inside window + draw the line 

Cl line entirely outside window + skip 
OD 

The invariant condition, which is maintained by the iterative part of this 
algorithm, is that the line includes every part of the original line that passes 
through the window, and includes nothing that was not part of the original line. 
Clearly, this condition is maintained, since only those parts of the line outside 
the window are removed. Certainly, if the invariant holds, and the remaining 
line is entirely inside the window, what gets drawn is exactly that part of the 
original line that was inside the window. Likewise, if no part of the remaining 
line is in the window, none of the original was, so we draw nothing. 

Termination of this algorithm can be demonstrated by observing that the total 
length of the line remaining outside the window is monotonic decreasing and 
that the algorithm terminates when that amount reaches zero. Details of the 
proof are left as an exercise for the reader. For a hint, see [2, p. 411. 

Note that the algorithm, in this form, would not be even partially correct with 
DOkID semantics applied. This is because the iterative part could remove all of 
the line, making all guards false. The DOUpOn version prevents this from occur- 
ring, by assuring termination in such a state. A correct algorithm, using either 
DO or Doterm, would require more complex guards. 

We now proceed to elaborate on this algorithm, and improve it, until a practical 
algorithm is found. 

Since the window is convex, a line passing through an edge (passing from the 
inside to the outside) does not reenter the window. It would thus suffice for the 
iterative guard to determine whether the line crosses any boundaries of the 
window. Where it does, the part outside the window can be eliminated. The 
following algorithm implements this strategy and substitutes an equivalent set 
of guarded statements for the strengthened iterative guard. Although the com- 
bined effect of its iterative guards is somewhat stronger than in the original 
algorithm, Theorem 3 assures us that the resulting algorithm is still correct: 

DO line crosses left boundary + remove part to the left 
Cl line crosses right boundary + remove part to the right 
Cl line crosses top boundary + remove part above 
0 line crosses bottom boundary + remove part below 

UPON line entirely inside window + draw the line 
II line entirely outside window + skip 

OD 

ACM Transactions on Programming Languages and Systems, Vol. 9, No. 4, October 1987. 



A Generalized Iterative Construct and Its Semantics 579 

The algorithm is clearly still correct, but testing for intersections with the 
rectangle’s boundary is not computationally efficient enough for a useful algo- 
rithm. Theorem 4 permits us to weaken the iterative guards to a form which is 
more quickly computed. To do this, we extend each of the four window boundaries 
to infinite lines, each dividing the plane into two parts. It is easy to determine 
which half plane any point lies in, and if the two ends of the line lie in opposite 
half planes, the line crosses the extended boundary. Furthermore, if a line crosses 
none of these lines, it certainly does not cross the window’s boundary. This leads 
to the following algorithm 

DO line crosses X&n -9 remove part to left 
II line crosses X,., + remove part to right 
II line crosses Y&n + remove part below 
0 line crosses Y,,, ---, remove part above 

UPON line entirely inside window + draw the line 
Cl line entirely outside window + skip 

OD 

The corollary to Theorem 4 shows that this transformation is safe, since only 
the part of the line outside the window is ever removed. Although termination 
must be reestablished, it is easily demonstrated in the same manner as for the 
original algorithm. We now have a somewhat more efficient algorithm, which is 
still known to be correct. However, the second termination condition is still 
inefficient to compute. 

To further improve the efficiency of the algorithm, we use the observation 
that, if the line is entirely on the outside of any particular extended boundary 
(e.g., left of Xmin), it is also entirely outside the window. We also observe 
that the line is entirely inside the window if and only if it is on the inside 
of all extended boundaries (e.g., right of Xmin). We thus strengthen the second 
termination guard, and reword the first, obtaining 

DO line crosses Xmin + remove part to left 
0 line crosses X,.. + remove part to right 
Cl line crosses Ymin + remove part below 
0 line crosses Y,,, -B remove part above 

UPON line entirely inside all extended boundaries + draw line 
0 line entirely outside some extended boundary + skip 

OD 

According to Theorem 6, this transformation preserves partial correctness. 
Termination can again be established by the same means as before. Even though 
a few more iterations may now be required in order to terminate, each iteration 
costs less, and the overall performance is improved. As a final optimizing step, 
we observe that, if the line is entirely inside (or entirely outside) any boundary, 
it does not cross it. Furthermore, the termination guards cover all cases where 
no boundary is crossed. It therefore follows from Theorem 3 that the iteration 
guards can be strengthened (and thus simplified) by making use of the assumption 
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that a boundary is crossed, yielding 

DO & < Xmin + move A to Xmin 
Cl Xl < Xmin + move B to Xmin 
0 xl > xnax --* move A to X,,, 
0 x1 > xmx + move B to X,,, 
0 Yo < Ymin + move A to Ymin 
0 Y, < Ymin + move B to Ymin 
0 Yo > ym., + move A to Y,,, 
0 Yl > Ym., + move B to Y,., 

UPON line entirely inside all extended boundaries --, draw line 
Cl line entirely outside some extended boundary --, skip 

OD 

As a notational convenience, the phrase “move A to Xmin” is used to indicate 
that the coordinates of point A are changed to those where the line crosses the 
Xmin boundary. Under the indicated condition, this has the effect of removing 
the part of the line outside the boundary. 

Implementation of this form of the algorithm generally makes use of two small 
sets (or bit arrays), which record which of the four extended boundaries each of 
the end points is outside of. The iteration guards then reduce to checking set 
membership. The first termination guard is simply a test of whether the union 
of the two sets is empty. The second termination guard tests whether the inter- 
section of the two sets contains at least one element. In this form, the algorithm 
is equivalent to the Cohen-Sutherland line clipping algorithm [5, p. 661, except 
for the degree of nondeterminism, and the absence of flags. Implementation of 
this algorithm, using DO or DOterm, would require stronger iterative guards in 
order to assure termination, since in this form several iterative guards remain 
true at completion. 

9. CONCLUSIONS 

The generalized iterative statement, DOUpOn, has several advantages over DO. It 
simplifies some commonly used algorithms by avoiding flags and repeated tests. 
It simplifies discovery of new algorithms by decoupling the requirements of 
termination from those of invariance under iteration. It also provides several 
useful optimizing transformations, which cannot be used with DO and which are 
safe only because the iteration guards do not affect the termination condition. 

DOUpOn subsumes both DO and IF, in that either of the latter can be expressed 
as a degenerate form of Doupon. This is analogous to the manner in which IF 

subsumes if-then-else and case. Although this unification of the forms is 
theoretically useful, a practical language would probably still include the simpler 
forms as syntactic sugar. 

Still further unification of language constructs can be obtained by slightly 
redefining Doupon. In case none of the guards is true, Doupon fails. However, if 
we specify instead that it simply waits until a guard becomes true, and if we add 
suitable interprocess communication primitives, the construct becomes similar 
to those introduced by Hoare for communicating sequential processes [4]. Hoare’s 
distributed termination convention would be replaced by explicit termination 
conditions. Although such a change would significantly alter the semantics of 
ACM Transactions on Programming Languages and Systems, Vol. 9, No. 4, October 1987. 



A Generalized Iterative Construct and Its Semantics 581 

Doupon, those given in this paper would still be implied (as a degenerate case) 
when only one process accesses the relevant variables. In particular, the statement 
would wait forever (a form of failure) if none of the guards is true. Formal 
definition of this extension remains a topic for further research. 
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