
A Generalized Iterative Construct
and Its Semantics

ED ANSON
Northeastern University

A new programming language construct, called Doupon, subsumes Dijkstra’s selective (IF) and
iterative (DO) constructs. DOUpOn has a predicate transformer approximately equivalent in complexity
to that for DO. In addition, it simplifies a wide variety of algorithms, in form as well as in discovery
and proof. Several theorems are demonstrated that are useful for correctness proofs and for optimi-
zation and that are not applicable to DO or IF. The general usefulness of Doupon derives from a
separation of the concerns of invariance, through iteration, from those of termination.

Categories and Subject Descriptors: D.2.4 [Software Engineering]: Program Verification-correct-
ness proofs; D.3.1 [Programming Languages]: Formal Definitions and Theory--semantics; D.3.3
[Programming Languages]: Language Constructs-control structures

General Terms: Languages, Theory, Verification

Additional Key Words and Phrases: Iterative constructs, predicate transformer

1. INTRODUCTION

Representing the semantics of programs (and program parts) as predicate trans-
formers is useful, not only for proving properties of programs, but for aiding their
synthesis as well [2]. When coupled with a powerful set of statements composed
of guarded commands, the formalism can be extremely useful.

Guarded statement forms, described by Dijkstra [2], include a purely selective
form (IF) and a purely iterative form (DO). A new form (DOUpOn) subsumes the
iterative and selective forms. It provides more expressive power and simplifies
both the synthesis and the proofs of algorithms. Furthermore, it reduces by one
the number of distinct control structures required for programming.

Although a syntactic form is introduced for DOUpOn, it is not to be construed
as proposed syntax for a practical programming language. Indeed, the form used
is probably not particularly useful for programming. (It is nevertheless useful for
discussing semantics.) The intent of this paper is to introduce a new semantic
form, which can be used to simplify future languages, and to give new insight
into the logic of programming.

The revision of this paper was supported by California Computer Products, Inc.
Author’s current address: CalComp Display Products Division, C.S. 908, PTP2-2D01, Hudson, NH
03051-0908.
Permission to copy without fee all or part of this material is granted provided that the copies are not
made or distributed for direct commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by permission of the Association
for Computing Machinery. To copy otherwise, or to republish, requires a fee and/or specific
permission.
0 1987 ACM 0164-0925/87/1000-0567 $01.50

ACM Transactions on Programming Languages and Systems, Vol. 9, No. 4, October 1987, Pages X7-581.

http://crossmark.crossref.org/dialog/?doi=10.1145%2F29873.30391&domain=pdf&date_stamp=1987-10-01

568 l Ed Anson

Almost simultaneously with the original submission of this paper, Parnas [7]
proposed a construct that is semantically very similar to DOUpOn. However, it is
different in a crucial way. Ironically, Parnas considered a form semantically
equivalent with DOUpOn, but rejected it for supposed efficiency reasons. Conse-
quently, this paper now includes a discussion of Parnas’s construct and a detailed
comparison of the semantic differences between the two forms. It is shown that
DOUpOn is much simpler semantically and can lead to more efficient implemen-
tations than Parnas’s construct.

Section 2 informally introduces Doupon, and Section 3 gives a simple example
of its usefulness. Section 4 formally defines the predicate transformer for DOUpOn.

Section 5 demonstrates two theorems, which indicate unusual flexibility of the
construct in the design of algorithms, and Section 6 illustrates this flexibility
with an example. Section 7 demonstrates some theorems related to optimizing
transformations, unique to DOUpOn, and Section 8 applies some of those theorems
to solve a programming problem.

2. SYNTAX AND INFORMAL SEMANTICS
OF A NEW ITERATIVE CONSTRUCT

The statement forms defined by Dijkstra [2] include the IF and DO, briefly
described as follows:

IF Ql+ Ml Cl Q2 + Mz 0.. . 0 Qn + M, FI

and

(IF)

DOP,~L,oP~~L,o...oP,~L,OD (DO)

In these statements, the Pi and Qi are predicates defined on the state space of
the program and are known as guards. The Li and Mi are statements of any kind.

Informally, IF executes by first determining which of the guards are true. If
one or more guards are true, one of the true guards (Qi) is selected arbitrarily
and the corresponding statement (Mi) is executed. If none of the guards is true,
the statement fails. In the case where more than one guard is true, the statement
is nondeterministic. Note that the guard selection is not necessarily random. The
nondeterminism simply implies that the programmer cannot know which true
guard will be chosen. For example, an implementation which chooses the first
true guard found would be as valid as a totally random choice.

The DO statement executes in a manner similar to the IF, in that any one of
the true guards may cause its corresponding statement to be executed. However,
if this occurs, the entire statement is then executed again. When no guard is
true, the statement terminates normally. Again, if more than one of the guards
can be true at any given time, the statement is nondeterministic.

The new statement form, Doupon, combines the features of IF and DO:

DO PI ---, Ll 0 Pz + Lz 0 . . . cl P, + L,
UPON Ql+ Ml 0 Qz + Mz 0 . . . Cl Qn ---* M, OD (DOUpOn)

As a notational convenience throughout this paper, we consistently use P and
Q, and L and M, to refer to the iterative and selective sets of guards and
statements, respectively. We also use IFP to represent an IF statement composed

ACM Transactions on Programming Languages and Systems, Vol. 9, No. 4, October 1987.

A Generalized Iterative Construct and Its Semantics 569

of the P guards, whether taken from a DO or Doupon. We use IFQ to represent
an IF statement composed of the Q guards from a DOUpOn.

Informally, the Doupon statement executes as follows: If any of the guards Qi
are true, execution is as in IFQ. That is, the statement terminates after executing
one of the guarded statements from the UPON clause. Otherwise, if one or more
of the guards Pi are true, a corresponding statement Li is executed and the entire
statement repeats. Accordingly, the guards Pi are called iterative guards, and the
guards Qi are called the terminating guards. If no guard is true, the statement
fails.

Unlike the DO statement, DOUpOn can terminate even if some iterative guards
are true. The termination condition is stated positively, rather than negatively
as in DO. Furthermore, when termination occurs, an action is immediately
selected that is appropriate to the particular reason for termination. These
properties, rather than the combination of forms in itself, result in the special
usefulness of DOUpOn.

Parnas [7] proposes a construct similar to DOUpOn. Although he uses different
syntax and calls the structure IT-TI, it is given a similar syntax to Doupon here,
to avoid issues irrelevant to semantics. It will be called DOterm here, by analogy
to DOUpOn. It thus looks like this:

DO P1 + Ll 0 Pz + LB II . . . 0 P, + L,
TERMQ~--*M~~Q~~M~~...OQ,~M,OD (DOterm)

A “term” clause is used here, instead of “upon,” to signify a different interpre-
tation of the termination guards. Parnas allows that execution may terminate if
one of the Q guards is true, but if one of the P guards is also true, execution may
either continue or terminate, nondeterministically. Unlike DOUpOn, an iterative
guard may be chosen regardless of the truth of the termination guards.

Parnas argues that such a form would be more efficient than DOUpOn, since it
is not necessary to evaluate all the termination guards of DOterm in order to
continue iteration. In a highly parallel processor, this might sometimes be an
advantage. However, it also increases the nondeterminism of the iteration,
possibly causing it to continue long after it could have terminated in a desirable
state. It seems prudent (at least in some cases) to terminate as soon as a
termination guard indicates that termination is valid.

It is particularly worth noticing that, in any sequential implementation, the
guards must be evaluated in some order. In such a case, the supposed efficiency
of Doterm is not realized, but its limitations are. Of course, Doterm can be
implemented with termination guards evaluated first. But, in such an implemen-
tation, its implementation is indistinguishable from Doupon, while the semantic
limitations remain. As is shown in Section 4, the semantics of DOUpOn would
generally be preferred.

3. A SIMPLE EXAMPLE

A common occurrence in programming is that, when an iteration terminates, one
of two or more conditions is known to hold, and a different action is required for
each. A simple example is a sequential search of a small array, with different
actions taken for each of the two (or more) keys, or for failure.

ACM Transactions on Programming Languages and Systems, Vol. 9, No. 4, October, 1987.

570 l Ed Anson

The following program fragment searches the first n elements of an array
named “list” for the first element containing either of two specified keys. If it
finds either key, a procedure is executed, which depends on which key is found.
If neither key is in the array, a message to that effect is printed. To simplify the
algorithm, we assume the array is initialized so that l&[n + l] contains some
value that is not equal to either key. Although this assumption is not necessary,
it helps us to avoid distracting details.

i := 1;
DOi5n + i := i + 1
UPON li.st[i] = Key1 + TypeOneAction(Key1, i)

Cl li.st[i] = Key!2 + TypeTwoAction(Key2, i)
lli>n -+ print(“Search Failed”)

OD

The reader may have noticed that, since i > n causes termination, the iteration
guard (i I n) can be weakened to true, without affecting the correctness of the
program. The guard is given in its present form, as kind of documentation of the
fact that only n + 1 elements are guaranteed to be in the array, and thus it is
meaningless (incorrect) to advance i past that value. In Section 7, we discuss in
more detail the conditions under which guards may be weakened or strengthened.
In particular, the corollary to Theorem 4 applies to the present example.

At this point, it is worth observing that, with conventional iterative statements,
this program is somewhat more complicated. An equivalent solution, using DO

and IF, follows:

i := 1;
DO (i I n) and (li.st[i] # Keyl) and (l&t[i] # Key2) + i := i + 1 OD;
IF li.st[i] = Key1 + TypeOneAction(Key1, i)

i y;[iJ = Key2 + TypeTwoAction(Key2, i)
+ prmt(“Search Failed”)

FI

This program requires an extra evaluation of the predicates upon termination.
Many programmers find this objectionable for esthetic reasons as well as for
reasons of efficiency. It also tends to complicate proofs of correctness. It is worth
noting that none of the guards can be weakened in this version. A similar
structure would be required by DObXIq in which IF is replaced by TERM. The
simpler structure, used for DOUpOD, would not generally terminate correctly if
Doterm semantics were applied, since iteration could continue after a key is
found.

This example is one of a large class of problems, which require either reevalu-
ation of predicates or the setting of flags, in order to solve the problem with
conventional statement forms. This fact has led others to propose alternative
loop forms, with exits at arbitrary points [l, 3, 81. However, the semantics of
such multiexit loops are difficult to define accurately, since they suffer from a
similarity to the goto. Doupon solves the problem cleanly, while only slightly
restricting the ability to exit from a loop.

The difficulty of defining the semantics of goto is fully explained in [6] and
arises from the fact that execution does not pass to the next statement of the
program. Hoare-type logics, as well as weakest precondition semantics, implicitly
ACM Transactions on Programming Languages and Systems, Vol. 9, No. 4, October 1987.

A Generalized Iterative Construct and Its Semantics 571

assume that control passes from each statement directly to the next. goto violates
this assumption, leading to a breakdown of the reasoning systems. Multiexit
loops (and exception mechanisms) have a similar anomaly at the exit points.
Although the Hoare-type semantics of a single multiexit loop may be defined
adequately in some cases, nested structures cause problems.

As shown in the next section, the semantics of DOUpOn are well defined and
are as simple as those for DO and IF. Proofs of correctness may even be simpler
in many cases.

4. FORMAL SEMANTICS OF THE ITERATIVE CONSTRUCT

The semantics of DOUpOn are described by its weakest precondition function, in
a manner similar to that used by Dijkstra [2] to define IF and DO.

For any statement S, and predicate R, the function wp(S, R) yields the weakest
precondition predicate guaranteeing that S will terminate normally, in a state
satisfying R. DOUpOn is a statement of the form

DO P, + L, 0 Pz + Lz 0 . . . 0 P, -+ L,
UPONQ~~M~OQ~~M~O...O&,~M,OD

As a notational convenience, we define PP = (3j:l I j I m: Pi), and QQ =
(3j:l 5 j 5 n: Q), to refer to combinations of the iterative and terminating
guards, respectively.

As defined in [2, p. 341, Dijkstra’s IF statement is of the form

IFQ~+M~IJQ~+M~O...IIQ~+M~FI

and is described by

Wp(IF, R) = QQ and (k/j:1 5.j 5 n: Qj * w(Mjy R)).

The DOUpOn statement is described recursively, using a function Hk(Doupon,
R), which is the weakest precondition guaranteeing that DOUpOn terminates in k
or fewer iterations, yielding a stats which satisfies the predicate R. Since Doupon
terminates immediately if and only if one or more of the Q guards is true, we
have

Ho(Doupon, R) = ~~(IFQ, R).

Since each successive iteration reduces by one the limit implied by Hk, it
follows that Hk(Doupon, R) is true if and only if execution of any one of the P
guarded statements yields a state satisfying H~--l(Doupon, R), or if the statement
terminates immediately. Therefore, for any tZ > 0,

&(noupon, R) = Wp(IFp, Hk--l(DOUpOn, R)) or R,,(noupon, R)

Given this definition, we define

Wp(DOUpOn, R) = (3k:k 2 0: &(DOupon, R))

This definition is essentially different from that of DO [2, p. 351, only in the
definition of Ho. For DO, H&DO, R) = (R and non PP). DOUpOn is thus slightly
more complex than Do because it also includes the equivalent of IF. However, in
those cases where the DO would be followed by an IF, DOUpOn is actually simpler

ACM Transactions on Programming Languages and Systems, Vol. 9, No. 4, October, 1987.

572 l Ed Anson

in the aggregate. Where the subsequent IF is not needed, Doupon reduces to

DO P1 + L* 0 Pz + Lz 0 . . . II P, + L,
UPON non PP + skip
OD

which is semantically identical with DO. In an actual programming language, it
would probably be useful to introduce syntactic sugar for the phrase non PP. In
this context, the value is trivial to compute, once all the Pi have been computed.

Note, also, that a Doupon statement with an empty iterative part is equivalent
with IF. Since DO and IF are degenerate forms of DOUpOn, the semantics of
DOUpOII need never be more complex than for DO and IF. Indeed, they are often
simpler.

On the other hand, the semantics of Doterm are considerably more complex.
Parnas [7] describes the semantics of his construct, using set theory. Here, the
equivalent weakest precondition semantics are given, to facilitate comparison of
Doterm with DOUpOn.

Since the iterative part of Doterm may continue whenever any P guards are
true, termination is assured only when all are false. This introduces additional
complexity into the base of the recursive definition, which thus becomes

&(noterm, R) = non PP and Wp(IFq, R).

For lz > 1, the Hk expression describes iteration for the P guards and termi-
nation for the Q guards. We thus obtain

&(ooterm, R) = &(Doterm, R) or ((PP or QQ) and (PP + wp(IFp, Hk-l(noterm, R))
and (QQ * W(IFQ, R))

However, since Ho + QQ, this may be simplified to

&(noterm, R) = (PP or QQ) and (PP + wp(IFp, Hk-l(ooterm, R))) and (QQ *
W(IFQ, RI).

The most obvious consequence of this is that weakest precondition expressions
involving DOtt?rm are intrinsically more difficult to evaluate than are expressions
involving DOUpOn. Less obvious is the fact that the weakest precondition for
Doterm is much stronger than for Doupon, which seems to imply a less powerful
construct. Indeed, Parnas [7] alludes to the fact that his construct makes
termination more difficult to obtain.

5. THE BASIC THEOREMS FOR DOupon

The weakest precondition, defined in Section 4, is not directly useful for pro-
gramming. That is, a programmer does not generally determine the weakest
precondition for each program part. Instead, he or she uses a bag of tricks,
accumulated over years of experience, to determine the most useful way to
implement a desired program. Each trick from the bag is, in effect, a theorem
abut the behavior of some program schema. In order to deveIop such theorems
in a disciplined manner, it is necessary to have methods that are readily
applicable.

This section demonstrates several theorems that apply to useful programming
techniques. Additional theorems are given in Section 7. All theorems are given
with informal proofs only. Indeed, what is given amounts to a sketch of each
ACM Transactions on Programming Languages and Systems, Vol. 9, No. 4, October 1987.

A Generalized Iterative Construct and Its Semantics 573

proof, intended to suggest the plan for a more detailed proof. Such detailed proofs
are left as exercises for the ambitious reader.

Dijkstra’s basic theorem for the DO construct [2, p. 381 provides a useful way
to demonstrate desired properties of DO or to discover a correct iterative algo-
rithm. Given a predicate V (an invariant condition), and the knowledge that
(V and PP) 4 wp(~~~, V), we can conclude that (V and wp(D0, true)) 4 wp(D0,

V and non PP). Putting it another way: Given that (V and PP) =s. wp(IFp, V)
and also that, for some predicate R, (V and non PP) + R, we may conclude
(V and wp(~o, true)) + Wp(D0, R). That is, given the invariant condition,
only termination need be demonstrated to prove total correctness.

A similar result can be shown for Doupon.

THEOREM 1. Given (V and non QQ) + w~(IF~, V), and (V and QQ) +
wp(~~~, R), we may conclude (V and Wp(DOUpOn, true)) d Wp(DOUpOn, R).

The proof is similar to Dijkstra’s proof for DO. The first antecedent guarantees
that V is invariant within the iterative part of DOUpOn. The invariance of V,
together with the second antecedent, guarantees that termination leads to R,
since termination occurs if and only if QQ holds. Therefore, the conjunction of
V with a guarantee of termination guarantees that Doupon will terminate in a
state satisfying R.

Another result follows for Doupon, which has no useful analog for DO or
Doterm.

THEOREM 2. Given V + w~(IF~, V), and (V and QQ) + w~(IF$, R), we may
conclude (V and wp(Doupon, true)) + Wp(DOUpOn, R).

This follows directly from Theorem 1 because the first antecedent is stronger.

This result differs from Theorem 1 only because the first antecedent does not
include non QQ. This implies a stronger invariant condition than Theorem 1
because Theorem 2 allows the invariance to fail when QQ holds.

Although Theorem 2 follows directly from Theorem 1, it is stated separately
to emphasize an important property of DOUpOn. Notice that the equivalent
theorem for Do (omitting the second antecedent, which cannot apply) would not
be useful. Do requires the weaker form of invariance, as stated by Dijkstra. That
is, since (for DO) wp(IFp, V) + PP, the antecedent V + wp(IFp, V) yields V *
PP, and thus wp(D0, true) + non V. Thus, the conclusion becomes the vacuous
statement (V and non V) + Wp(D0, R). Put more simply, the antecedent of
Theorem 2, applied to DO, would guarantee that DO does not terminate.

Doterm satisfies Theorem 1 as well, but termination is more difficult to
establish. Furthermore, Theorem 2 is vacuous for Doterm, since the stronger
antecedent rules out any guarantee of termination. The reasoning, in this case,
follows that for DO.

For some classes of problems, the stronger invariant allowed by Theorem 2 is
useful, as is illustrated by the example in the next section.

6. ANOTHER EXAMPLE

Let us suppose that we are designing a memory management system. Let us
futher suppose that the nature of the application is such that if, at any time, an

ACM Transactions on Programming Languages and Systems, Vol. 9, No. 4, October, 1987.

574 l Ed Anson

allocation request exceeds the amount of available memory, the application fails.
This is realistic, for instance, in a transaction-oriented system, where (at the
very least) a transaction must fail if it cannot obtain sufficient memory.

A reasonable way to evaluate a design for our memory manager would be to
simulate its behavior under a random sequence of requests supposed to represent
a realistic load. To do this, we create a data structure that represents the memory
map together with statistics about its history. Then we create a time-ordered
even queue. Allocation and release events are simulated until a specified simulated
time elapses, or an allocation fails. The results are reported.

The following is a sketch of a program for the simulation, which assumes the
following: Allocation requests arrive at random intervals and allocate random
amounts of memory. Once allocated, a block of memory is released to the pool in
a random amount of time. We will not concern ourselves here with distributions
of the random functions, or even with the details of the allocation strategy or of
desirable statistics.

set memory map to a starting configuration;
schedule first request;
DO next event a request + simulate allocation;

schedule release;
schedule next allocation

II next event a release + simulate release
UPON next event a request > MenAvail+ print failure notice

Cl next event has time > t + print statistics
OD

In this program skeleton, the iterative part is essentially a simulator of the
memory management system. The termination guards simply indicate conditions
under which the simulation is to be terminated. We are assuming here that the
simulator is correct. For example, it must maintain a variable MemAuaiZ that
reflects the remaining available simulated memory. Simulating an event is
assumed to remove it from the event queue, and scheduling an event adds an
event to the time-ordered queue, with time greater than the current simulated
time.

The invariant condition, maintained by the iteration, is simply a correspond-
ence between the data and the state of the simulated system. In particular, the
memory map represents the result of all simulated events, and the first event on
the queue is the next that would occur in the real system. This condition is
trivially established prior to entering Doupon, and the invariance follows, if the
simulator is correct. Given this condition, either of the two termination conditions
leads to the correct results, as can be easily seen. By Theorem 2, the program is
partially correct. Termination (and thus total correctness) follows from the
observation that simulated time is monotonically increasing [2, p. 411.

What is most significant is that the use of either DO or Doterm for the
simulation would require incorporation of the MemAuaiZ test and/or the time
test into each of the iterative guards. This is not only cumbersome, but would be
unnatural, since those conditions have nothing to do with the logic of the
simulation itself. Furthermore, the tests would still have to be made again, upon
termination, in order to produce the desired output. On the other hand, the
Doupon version would allow the same iterative part to be used with different
ACM Transactions on Programming Languages and Systems, Vol. 9, No. 4, October 1987.

A Generalized Iterative Construct and Its Semantics 575

termination conditions, which need not necessarily involve time or available
memory. Such advantages, due to Doupon, would tend to increase with the overall
complexity of a simulation.

The DOUpOn thus shows its usefulness, by separating the concerns of invariance
from those of termination. The example given is typical of a wide class of
converging iterative algorithms. For example, a Taylor series, a Newton iteration,
or a binary search of the real line, are potentially unending sequences. Neverthe-
less, each converges toward a solution. It is semantically convenient to specify
the (arbitrary) termination criterion separately from the iteration guards. DO
would require the effective inclusion of the termination guards in each of the
iterative guards, in order to assure termination. Doterm would also require
inclusion of termination criteria in the iterative guards in order to prevent further
iteration after convergence is achieved. In such cases, the supposed comparative
efficiency of Doterm is not realized, because the termination criteria must still
be computed on each iteration.

7. SOME OPTIMIZATION RESULTS

A useful strategy for discovering a good algorithm is as follows: First, devise a
simple algorithm, known to be correct. Then apply safe transformations which
improve its efficiency. Throughout these steps, a nondeterministic algorithm is
at least notationally useful, since it does not unnecessarily constrain choices.
The semantics of the iterative construct are consistent with many possible
sequential implementations, one of which may be chosen based on efficiency
considerations. This process is illustrated by the example in Section 8.

DOUpOn offers unique optimization transformations, due to the fact that the
iteration and termination conditions may be manipulated more or less indepen-
dently. In particular, we show in this section that strengthening or weakening
the guards is safe, under a wide range of conditions, and can lead to a better
algorithm.

THEOREM 3. If the correctness of a DOUpOn statement bus been established by
means of Theorem 1 or Theorem 2, then strengthening one or more of the iterative
guards preserves total correctness, provided that (V and non QQ) + PP still holds.

Observe that the only antecedent of either theorem, affected by strengthening
an iterative guard, is the first, namely, (V and non QQ) + wp(IFp, V). In
particular, the value of wp(IFp, V) may be affected. However, wp(~~~, V) =
(PP and (Vj:l 5 j 5 m: Pj + wp(Lj, V))). Strengthening any Pj cannot negate
the truth of the second part, so only PP need be established again, as stated by
the Theorem.

Notice that, since wp(IFp, V) * PP, verifying the proviso of
Theorem 3 generally amounts to less work than reestablishing the antecedent of
Theorem 1.

Notice also that this result applies to total correctness, as well as to partial
correctness. That is, if Theorem 1 or 2 has established partial correctness, and
other means have established termination, strengthening the iterative guards
preserves termination under the conditions of Theorem 3. This is because such

ACM Transactions on Programming Languages and Systems, Vol. 9, No. 4, October, 1987.

576 l Ed Anson

strengthening of iterative guards can only reduce the nondeterminism of the
execution. That is, any sequence of execution possible with the strengthened
guards was also possible with the weaker guards. If such sequences were correct
before, they still are. The proviso of Theorem 3 is sufficient to assure that at
least one guard is true at the beginning of each iteration.

Strengthening the iterative guards can lead to quicker convergence of an
iteration, by effectively choosing (from the correct alternatives) a statement that
makes more progress than the others. The fact that this can be done without
affecting the termination condition is convenient. The DO statement does not
have this property, since strengthening its guards can weaken its termination
condition, allowing the DO to terminate in an incorrect state.

COROLLARY. If the antecedents of Theorem 1 are satisfied, but termination of
the DOUpOn cannot be established, strengthening one or more iterative guards may
help establish total correctness.

With the given conditions, strengthening of the guards preserves partial
correctness. In many cases, the first form of an algorithm may fail to converge
because one or more of the guards are too weak. That is, some steps may be
possible that make no progress toward the desired state, or that actually diverge.
It will often be sufficient simply to strengthen one or more guards to prevent
this. In the extreme case, a guard may become false, and the corresponding
statement may thus be removed.

THEOREM 4. If the partial correctness of a DOUpOn statement has been estab-
lished by means of Theorem 1 or Theorem 2, then weakening one or more of the
iterative guards preserves partial correctness, provided that (V and non QQ) *
wp(IFp, V) still holds.

The proof of this theorem is similar to that for Theorem 3. Weakening an
iterative guard only affects the first antecedent of Theorem 1 or 2, and so only
that antecedent must be reestablished. However, since the guard is being weak-
ened, the entire invariance must be demonstrated anew. Furthermore, weakening
the guards also requires that termination be established anew, due to the converse
of the Corollary to Theorem 3.

It would at first appear that this theorem has very limited usefulness. Never-
theless, it is useful, as illustrated in Section 8. In particular, speedup can occur
due to simplification of the guards, and in many cases it is not difficult to show
that the invariance and termination arguments used for the original algorithm
apply as well to the new one. If only one guard is changed at a time, the following
corollary may prove useful.

COROLLARY. If the partial correctness of a Doupon statement has been estab-
lished by means of Theorem 1 or Theorem 2, then weakening any iterative
guard Pi to P[(i.e., Pi + PE) preserves partial correctness, provided that (V and
non QQ and PI) + wp(Li, V) still holds. A special case of this corollary is
particularly useful. When a guard Pi is weakened to Pi, such that (P(
and (V and non QQ)) = Pi, total correctness is preserved.

Proof of this corollary is left to the reader.
ACM Transactions on Programming Languages and Systems, Vol. 9, No. 4, October 1987.

A Generalized Iterative Construct and Its Semantics l 577

THEOREM 5. If the correctness of a DOupon statement has been established by
means of Theorem 1 or Theorem 2, then weakening one or more of the termination
guards preserves total correctness, provided that (V and QQ) + wp(IFo, R) still
hOldS.

Weakening the termination guards affects both antecedents of Theorem 1, and
only the second antecedent of Theorem 2. However, weakening QQ strengthens
the left side of the implication in the first antecedent and cannot make that
antecedent false. The second antecedent, in both cases, is simply the proviso of
Theorem 5.

COROLLARY. If the correctness of a DOUpOn statement has been established by
means of Theorem 1 or Theorem 2, then weakening any termination guard Qi
preserves total correctness, provided that (V and Qi) + wp(Mi, R) still holds.

This follows directly from Theorem 5. Since weakening a termination guard
also weakens QQ, it is necessary to show that the proviso of Theorem 5 still
holds in the additional states allowed by the weakened QQ. However, only the
weakened guard can be selected in those additional cases, and thus it is sufficient
to show that the corresponding statement gives the desired result. This is the
proviso of the corollary.

Again, these results apply to total, as well as partial, correctness. Weakening
QQ can cause earlier termination but cannot prevent termination already dem-
onstrated. If it is discovered that the antecedents of these results apply, earlier
termination is often obtained by making the transformation. This is because a
weaker termination condition is easier to converge upon.

THEOREM 6. If the partial correctness of a DOUpOn statement has been estab-
lished by Theorem 1 or Theorem 2, then strengthening one or more termination
guards Qi preserves partial correctness.

Since the strengthened termination guards imply the original ones, the ante-
cedents of Theorem 1 (or Theorem 2) still hold.

Since it may be more difficult for the iterative part of the loop to satisfy the
new (stronger) termination criterion QQ, new proof of termination is required.
As with Theorem 4, this theorem may appear to have limited usefulness. However,
it sometimes happens that the original termination argument applies as well to
the strengthened requirements, and that the stronger criterion is more efficiently
computed. Such a case is illustrated by the example in the next section.

Generally, we have shown in this section that the guards of Doupon may be
strengthened or weakened under a wide range of conditions, without affecting
the correctness of a program. Similar properties do not usefully apply to DO or
Doterm. Strengthening an iterative guard of a DO statement simultaneously
weakens the termination criteria, and vice versa. Doterm suffers from a similar
problem, though in a different way. Weakening an iterative guard may prevent
termination of Doterm, whereas it cannot do so to DOUpOn. However, apart from
termination problems, Doterm behaves similarly to DOUpOn, with respect to the
transformations discussed in this section.

ACM Transactions on Programming Languages and Systems, Vol. 9, No. 4, October, 1987.

578 l Ed Anson

8. A THIRD EXAMPLE

A problem, which often arises in computer graphics, may be stated as follows.
Given a line in the plane, from point A = (&, YO) to B = (X,, Y1), draw that
part of the line (if any) which passes through an upright rectangular window
bounded by Xmin I x I X,, and Ymin 5 y 5 Y,,,. That is, if the line passes
through the window, draw the part within the window; otherwise draw nothing.

The simplest form of the algorithm that solves this problem is

DO some part of line outside window -+ remove at least some of the part outside
UPON line entirely inside window + draw the line

Cl line entirely outside window + skip
OD

The invariant condition, which is maintained by the iterative part of this
algorithm, is that the line includes every part of the original line that passes
through the window, and includes nothing that was not part of the original line.
Clearly, this condition is maintained, since only those parts of the line outside
the window are removed. Certainly, if the invariant holds, and the remaining
line is entirely inside the window, what gets drawn is exactly that part of the
original line that was inside the window. Likewise, if no part of the remaining
line is in the window, none of the original was, so we draw nothing.

Termination of this algorithm can be demonstrated by observing that the total
length of the line remaining outside the window is monotonic decreasing and
that the algorithm terminates when that amount reaches zero. Details of the
proof are left as an exercise for the reader. For a hint, see [2, p. 411.

Note that the algorithm, in this form, would not be even partially correct with
DOkID semantics applied. This is because the iterative part could remove all of
the line, making all guards false. The DOUpOn version prevents this from occur-
ring, by assuring termination in such a state. A correct algorithm, using either
DO or Doterm, would require more complex guards.

We now proceed to elaborate on this algorithm, and improve it, until a practical
algorithm is found.

Since the window is convex, a line passing through an edge (passing from the
inside to the outside) does not reenter the window. It would thus suffice for the
iterative guard to determine whether the line crosses any boundaries of the
window. Where it does, the part outside the window can be eliminated. The
following algorithm implements this strategy and substitutes an equivalent set
of guarded statements for the strengthened iterative guard. Although the com-
bined effect of its iterative guards is somewhat stronger than in the original
algorithm, Theorem 3 assures us that the resulting algorithm is still correct:

DO line crosses left boundary + remove part to the left
Cl line crosses right boundary + remove part to the right
Cl line crosses top boundary + remove part above
0 line crosses bottom boundary + remove part below

UPON line entirely inside window + draw the line
II line entirely outside window + skip

OD

ACM Transactions on Programming Languages and Systems, Vol. 9, No. 4, October 1987.

A Generalized Iterative Construct and Its Semantics 579

The algorithm is clearly still correct, but testing for intersections with the
rectangle’s boundary is not computationally efficient enough for a useful algo-
rithm. Theorem 4 permits us to weaken the iterative guards to a form which is
more quickly computed. To do this, we extend each of the four window boundaries
to infinite lines, each dividing the plane into two parts. It is easy to determine
which half plane any point lies in, and if the two ends of the line lie in opposite
half planes, the line crosses the extended boundary. Furthermore, if a line crosses
none of these lines, it certainly does not cross the window’s boundary. This leads
to the following algorithm

DO line crosses X&n -9 remove part to left
II line crosses X,., + remove part to right
II line crosses Y&n + remove part below
0 line crosses Y,,, ---, remove part above

UPON line entirely inside window + draw the line
Cl line entirely outside window + skip

OD

The corollary to Theorem 4 shows that this transformation is safe, since only
the part of the line outside the window is ever removed. Although termination
must be reestablished, it is easily demonstrated in the same manner as for the
original algorithm. We now have a somewhat more efficient algorithm, which is
still known to be correct. However, the second termination condition is still
inefficient to compute.

To further improve the efficiency of the algorithm, we use the observation
that, if the line is entirely on the outside of any particular extended boundary
(e.g., left of Xmin), it is also entirely outside the window. We also observe
that the line is entirely inside the window if and only if it is on the inside
of all extended boundaries (e.g., right of Xmin). We thus strengthen the second
termination guard, and reword the first, obtaining

DO line crosses Xmin + remove part to left
0 line crosses X,.. + remove part to right
Cl line crosses Ymin + remove part below
0 line crosses Y,,, -B remove part above

UPON line entirely inside all extended boundaries + draw line
0 line entirely outside some extended boundary + skip

OD

According to Theorem 6, this transformation preserves partial correctness.
Termination can again be established by the same means as before. Even though
a few more iterations may now be required in order to terminate, each iteration
costs less, and the overall performance is improved. As a final optimizing step,
we observe that, if the line is entirely inside (or entirely outside) any boundary,
it does not cross it. Furthermore, the termination guards cover all cases where
no boundary is crossed. It therefore follows from Theorem 3 that the iteration
guards can be strengthened (and thus simplified) by making use of the assumption

ACM Transactions on Programming Languages and Systems, Vol. 9, No. 4, October, 1987.

580 l Ed Anson

that a boundary is crossed, yielding

DO & < Xmin + move A to Xmin
Cl Xl < Xmin + move B to Xmin
0 xl > xnax --* move A to X,,,
0 x1 > xmx + move B to X,,,
0 Yo < Ymin + move A to Ymin
0 Y, < Ymin + move B to Ymin
0 Yo > ym., + move A to Y,,,
0 Yl > Ym., + move B to Y,.,

UPON line entirely inside all extended boundaries --, draw line
Cl line entirely outside some extended boundary --, skip

OD

As a notational convenience, the phrase “move A to Xmin” is used to indicate
that the coordinates of point A are changed to those where the line crosses the
Xmin boundary. Under the indicated condition, this has the effect of removing
the part of the line outside the boundary.

Implementation of this form of the algorithm generally makes use of two small
sets (or bit arrays), which record which of the four extended boundaries each of
the end points is outside of. The iteration guards then reduce to checking set
membership. The first termination guard is simply a test of whether the union
of the two sets is empty. The second termination guard tests whether the inter-
section of the two sets contains at least one element. In this form, the algorithm
is equivalent to the Cohen-Sutherland line clipping algorithm [5, p. 661, except
for the degree of nondeterminism, and the absence of flags. Implementation of
this algorithm, using DO or DOterm, would require stronger iterative guards in
order to assure termination, since in this form several iterative guards remain
true at completion.

9. CONCLUSIONS

The generalized iterative statement, DOUpOn, has several advantages over DO. It
simplifies some commonly used algorithms by avoiding flags and repeated tests.
It simplifies discovery of new algorithms by decoupling the requirements of
termination from those of invariance under iteration. It also provides several
useful optimizing transformations, which cannot be used with DO and which are
safe only because the iteration guards do not affect the termination condition.

DOUpOn subsumes both DO and IF, in that either of the latter can be expressed
as a degenerate form of Doupon. This is analogous to the manner in which IF

subsumes if-then-else and case. Although this unification of the forms is
theoretically useful, a practical language would probably still include the simpler
forms as syntactic sugar.

Still further unification of language constructs can be obtained by slightly
redefining Doupon. In case none of the guards is true, Doupon fails. However, if
we specify instead that it simply waits until a guard becomes true, and if we add
suitable interprocess communication primitives, the construct becomes similar
to those introduced by Hoare for communicating sequential processes [4]. Hoare’s
distributed termination convention would be replaced by explicit termination
conditions. Although such a change would significantly alter the semantics of
ACM Transactions on Programming Languages and Systems, Vol. 9, No. 4, October 1987.

A Generalized Iterative Construct and Its Semantics 581

Doupon, those given in this paper would still be implied (as a degenerate case)
when only one process accesses the relevant variables. In particular, the statement
would wait forever (a form of failure) if none of the guards is true. Formal
definition of this extension remains a topic for further research.

ACKNOWLEDGMENTS

Comments by Kenneth Baclawski, Richard Bouchard, and Michael Weiss, who
reviewed earlier drafts of this paper, contributed substantially to the clarity of
presentation. Comments by the referees were also constructive and resulted in
substantial improvement to the discussion. The author’s current employer,
CalComp, provided substantial material support to the revision of this paper.

REFERENCES

1. BOCHMANN, G. V. Multiple exits from a loop without the GOTO. Commun. ACM 16, 7 (July
1973), 443-444.

2. DIJKSTRA, E. W. A Discipline of Programming. Prentice Hall, Englewood Cliffs, N.J., 1976.
3. EVANS, R. V. Multiple exists from a loop using neither GOT0 nor labels. Commun. ACM 17,

11 (Nov. 1974), 650.
4. Hoare, C. A. R. Communicating sequential processes. Commun. ACM 21, 6 (Aug. 1978),

666-677.

5. NEWMAN, W. M., AND SPROULL, R. F. Principles of Interactive Computer Graphics. McGraw-
Hill, New York, 1979, pp. 65-67.

6. O’DONNELL, M. J. A critique of the foundations of Hoare-style programming logics. Commun.
ACM 25,12 (Dec. 1982), 927-935.

7. PARNAS, D. L. A generalized control structure and its formal definition. Commun. ACM 26,
8 (Aug. 1983), 572-581.

8. WIRTH, N. Modula: A language for modular programming. Softw. Pratt. Exper. 7 (1977), 3-35.

Received August 1983; revised August 1986; accepted October 1986

ACM Transactions on Programming Languages and Systems, Vol. 9, No. 4, October, 1987.

