
TECHNICAL CORRESPONDENCE

Type-Extension Type Tests Can Be
Performed In Constant Time

NORMAN H. COHEN

IBM Thomas J. Watson Research Center

Wirth’s proposal for type extensions includes an algorithm for determining whether a given

value belongs to an extension of a given type, In the worst case, this algorithm takes time

proportional to the depth of the type-extension hierarchy. Wirth describes the loop in this

algorithm as “unavoidable,” but in fact, the test can be performed in constant time by

associating a “display” of base types with each type descriptor,

Categories and Subject Descriptors: D.3. 3 [Programming Languages] Language Constructs

and Features—datatypes and structures, procedures, functions, and subroutines; D.3.4 [Pro-
gramming Languages] Processors–code generation, compilers, run-time enuzronments: E.1

[Data] Data structures– lists; E 2 [Data] Data Storage Representations

General Terms: Algorithms, Languages, Performance

Additional Key Words and Phrases: Class, descriptor, display, extensible data type, inheritance,

membership test, object-oriented programmmg, type extension, type test

Wirth [2] proposes a programming-language feature called type extension. A

declaration of the form

LT’ = RECORD(T) END

extends the previously declared type T to form a new type T’. If, for example,

T is a record type, then T’ is a record type having all the fields of T plus the

fields declared at the point of the ellipsis. Type T’ is called a direct extension

of type T, and type T is called the direct base type of type T’. A type tl is an

extension of type t2 if tl= t2or tl is a direct extension of an extension of t2;

a type tz is a base type of a type tl if t2= tlor t2 is a direct base type of a

base type of tl.Furthermore, a pointer type pl is an extension of a pointer

type pz if the type pointed to by pl is an extension of the type pointed to

by p,.

Author’s address: IBM Research, Thomas J. Watson Research Center, P.O Box 704, Yorktown

Heights, NY 10598.

Permission to copy without fee all or part of this material is granted provided that the copies are

not made or distributed for direct commercial advantage, the ACM copyright notice and the title

of the publication and its date appear, and notice 1s given that copying M by permission of the

Association for Computing Machinery To copy otherwise, or to republish, requires a fee and/or

specific permission.

@ 1991 ACM 0164-0925/91/1000-0626 $01.50

ACM TransactIons on Programmmg Languages and Systems, Vol 13. No 4, October 1991, Pages 626-629

Technical Correspondence: Type-Extension Type Tests . 627

A value may be assigned to a variable if and only if the type of the value is

an extension of the type of the variable. The assignment discards any fields

of the value that are not fields of the variable. When the value or variable in

an assignment is referenced by a pointer, a run-time check may be necessary

to determine type compatibility. A VAR formal parameter is considered to be
an implicit reference by pointer to the actual parameter, so a run-time

type-compatibility check may also be required for uses of VAR formal param-

eters. Wirth proposes that each variable referenced by a pointer (including

actual VAR parameters) be accompanied by a hidden pointer to a type

descriptor for the type of the variable. The hidden pointer to the type

descriptor is called a type tag. The descriptor for an extended type includes a

“basetag” field pointing to the descriptor for the direct base type. The

following loop determines whether a value u maybe assigned to a variable of

type TO:

t := u.tag;

LOOP
IF t = TO THEN EXIT (TRUE) END;
t := t?.basetag;
IF t= NIL THEN EXIT (FALSE) END

END

Wirth writes, “Unfortunately, the provision of a loop construct for descend-

ing the linked list of tags is unavoidable since in the context of the test no

information is available about the number of extensions of the tested type

that may have been defined in other modules. ” In fact, sufficient information

is available in the context of the test to make the loop unnecessary. This

information comprises the set of base types of the value whose type is being

tested, the depth of each of these base types in the type-extension hierarchy,

and the depth of the tested type in the type-extension hierarchy.

The loop can be eliminated by an adaptation of the “display” originally

proposed by Dijkstra [1] to address nonlocal variables in a block-structured
language. The display can be thought of as a linear-list representation of a

linked list whose length is known. In Dijkstra’s scheme, directly indexing an

element of this linear list obviates the need to traverse a linked list of static

environment pointers.

In our adaptation, the descriptor for a given type includes a display

containing the type tags of each of its base types. Directly indexing an

element of this display obviates the need to traverse a linked list of type

descriptors. Unlike the displays used to address global variables, the displays

used for type tests can be constructed entirely at compile time.

Define the depth of a type in the type-extension hierarchy as follows: A

type that is neither an extended type nor a pointer type has depth zero; a

direct extension of a type with depth n has depth n + 1; and a pointer type

has the same depth as the type to which it points. Then a type at depth n in

the type-extension hierarchy has a unique base type at each depth d,

O < d s n. (For a pointer type pointing to some type t,the base type at a

given depth will be a type pointing to some base type of t,even though such a
type may not have been explicitly declared.) The descriptor for a type at

ACM Transactions on Programming Languages and Systems, Vol. 13, No. 4, October 1991.

628 . Norman H. Cohen

’000 \

TOO, /

’00 ~

TOI /

‘0 ~

“,~

T

Fig. 1. Family of types related by type extension An arrow from type a to type b means that

type a is a direct extension of type b. The base types of a given type are found along the path

from that type to the root of the tree.

Descriptor for TOOO:

m

Descriptor for TOO:

m
Descriptor for TO:

CElTag Tag
for for
T TO

Descriptor for TOC)l

m

Descriptor for TO1:

m

Descriptor for T1

m

Tag Tag

for for

T T1

Descriptor for T.

❑
Tag
for
T

Fig. 2. Dis~lavs contained in the descri~tors for each of the tv~es shown m Fima-e 1. The
di~play for a-gi~en type lists all of the type”’s base types, indexed b~’ distance from th~ root of the

tree in Figure 1 A “tag” for a given type is a pointer to the descriptor for that type

depth n includes a display with elements indexed from O to n. The element of

the display indexed by d is a type tag pointing to the descriptor for the type’s

base type of depth d, O < d s n.

The compiler constructs a descriptor for each type as it encounters the

declaration of that type. For a type that is not declared as a direct extension

ACM Transactions on Programming Languages and Systems, Vol 13 No. 4, October 1991,

Technical Correspondence: Type-Extension Type Tests . 629

of some other type, the descriptor contains a display with one element,

pointing to the descriptor itself. A type may be declared as a direct extension

of some other type only after that other type has been declared (perhaps in

some module compiled earlier). Thus, the compiler has access to the descrip -

tor of the direct base type. The descriptor of the type extension is constructed

with a display consisting of the display for the direct base type followed by a

pointer to the new descriptor itself.

Figure 1 depicts the type-extension hierarchy used in the examples of [2].

Figure 2 illustrates the displays of each of the seven types illustrated in this

hierarchy.

Assume that the display included in a type descriptor td is implemented by

two record components, td.depth and td.base.types. Component td.depth

gives the depth of the described type in the type-extension hierarchy. Compo-

nent td.base.types is an array of type tags indexed from O to td.depth, with

td.base_types[i] pointing to the descriptor for the base type at depth i of the

type described by td, O s i s td.depth. Then the test to determine whether

some dynamically allocated variable or VAR parameter u belongs to an

extension of type TO is as follows:

t := v.tag
IF t!.depth < T07.depth THEN

RETURN FALSE
ELSE

RETURN tT.base_types[TO ?.depth] = TO
END

The first arm of the IF statement handles the case in which type TO has a

greater depth than type t,and so cannot possibly be a base type of type t.In

the second arm of the IF statement, t? .base_types is a list of the base types of

type t. If the type tag for type TO is on this list, it must be at position

TOT depth.

REFERENCES

1. DIJKSTRA, E. W. Recursive programming. Numer. Math. 2 (1960), 312-318.

2. WIRTH, N. Type extensions. ACM Trans. Program. Lang. Syst. 10, 2 (Apr. 1988), 204-214,

Received December 1988; accepted January 1990

ACM Transactions on Programming Languages and Systems, Vol. 13, No. 4, October 1991.

View publication statsView publication stats

https://www.researchgate.net/publication/234829242

