
OBERON & Before and Beyond

Jürg Gutknecht, Russia, October 2018

ETH 1855

Year Language Concepts

1955 Algol/68

/W

Numerical math

Procedures

1970 Pascal Small scale programming

Types

1980 Modula-2 Large scale programming

Modules and Interfaces

1990 Oberon Object-oriented programming

Type extension

2000+ Active

Cells

Hybrid programming

Hardware description

Programming Languages @ ETH

Guiding

Design

Principles

 Formally defined (BNF)

 Strongly type save

 Functionally orthogonal & closed

 Directly reflecting basic principles

of construction

❖Stepwise refinement

❖Modular/hierarchical structures

❖ Information hiding

❖Abstraction

 As simple as possible – but not simpler

(quoting Albert Einstein)

Example for

“simpler than

possible”
Y Z

X

polyhedra

functionality

Use of Modula-2’s type

ADDRESS is too simple

❖Contradicts

type safety

❖ Breaks abstraction

Example for

“simpler than

possible”

Adding type extension

solves the pronlem

❖ Base type P

❖ Y “is-a” P

❖ Z “is-a” P

Y Z

X

polyhedra

functionality

P

Why Does All this Matter?

 “With the first computer language, one not only learns

a new vocabulary and grammar but one opens oneself

to an new world of thought”

Niklaus Wirth, Turing Award Laureate

 “We make our tools; then our tools make us”

Marshall McLuhan, Canadian Philosopher

 “The tools we use have a profound influence on our

thinking habits, and, therefore, on our thinking abilities”

Edsger W. Dijkstra, Turing Award Winner

Codesign @ ETH: Strive for Coherence

Language/

Compiler

Operating

System

Processor

Codesigned

Von Neumann/ Harvard/ Multicore

Challenge: Expressive power of language

ERMETH/
Algol

 Stiefel,

Rutishauser

 Numerical Math

ERMETH

Lilith/
Modula-2/ Medos

 Wirth and team

 Personal

Computer

 Inspired by

Xerox Alto

LILITH Screen with windows

Ceres/
Oberon

 Wirth/ Gutknecht

 Workstation

Original Oberon tiling screen

Examples of Industrial Use of

Oberon and Co.

Typically Small Business

Swiss Industry
Controller

(based on A2)
Swiss Quality

Colortronic

 High precision powder
mixing

… in Action

Highdim
University Hospital

(based on Active Cells)
Safety Critical

Medical IT

 Simulation of

heart activity

with implanted pump

(Abiomed Impella)

 Deep learning for

medical monitor signals

 Computational

holography for malaria

diagnostics

Many Others
(some hiding)

 aurora swiss aerospace

➢ Drone control

Others

➢ Running robot

➢ Helicopter control

➢ Material testing

➢ Rehabilitation planning

➢ Machine vision

for aerospace

The von

Neumann

Bottleneck

«One size does not fit all«

❖ Shared Memory

Communication Bottleneck

❖ Cache Coherence

Overhead

❖ Thread Synchronization

Overhead

Codesign @ ETH: Strive for More Coherence

Language/

Compiler

Operating

System

Processor

Codesigned

Application-aware processor, neural net, …

Challenge: Expressive power of language

The Vision: Hardware Compilation

High-level

program code

Electronic circuits

as bitstream

(FPGA, ASIC)

Synthesizer,

Simulator

Chameleon/ Lola

Multimedia system

(Eberle and team)

Allowed using ellipses and weigthed

average instead of triangles as

pixel primitives

First Attempt:

Project Switcherland

Multimedia

Chip by ETH

Enabler: Field Programmable Gate Arrays (FPGA)

High-Level Hardware

Language Lola

(Wirth, 1994)

TYPE Counter = MODULE (IN clk, rst, enb: BIT; OUT data: WORD);

REG (clk) R: WORD;

BEGIN
data := R;

R := ~rst -> 0 : enb -> R + 1 : R

END Counter

❖ Describes static digital

circuits instead of

dynamic processes

❖ Variables represent

signals or registers

❖ Values are defined as

expressions of other
objects and operators

representing gate

Sample program

The Active Cells Tool Chain

Project Supercomputer in the Pocket

 Funded by Microsoft’s Innovation Cluster Initiative,

2009 – 2014

 Topic: High performance custom architectures

for embedded systems on the basis of

programmable hardware (FPGA)

Goal: Development of a corresponding tool chain

 Approach: On-chip distributed system based on

ultra-simple processors

The

Tiny Register

Machine

TRM

(Wirth/ Liu)

Harvard Architecture

channel

cell

fifo

The Vision

engine

(eg. TRM)

Sample Code

1

type

Adder = cell (in1, in2: port in; res: port out);

var a1, a2: integer;

begin

in1 ? a1; in2 ? a2;

res ! a1 + a2

end Adder;

Single Cell

Sample Code

2

type

Filter = cell (in: port in; res: port out);

var ...; len: integer;

procedure & Init(len: integer)

begin self.len := len

end Init;

begin (* ... filter action ... *)

end Filter;

var f: Filter;

begin

… new(f, 32);

...

Cell constructor

Sample Code

3

Type

Filter = cell

{ VectorTRM, DataMemory(2048), DDR2 }

(in: port in (64); result: port out);

var ...

begin (* ... filter action ... *)

end Filter;Capabilities

Sample Code

4

type

Convolver2d =

cell { Engine } (

in: port in (64); result: port out);

end Convolver2d;

Cell made from

hardware

Sample Code

5

cellnet Example;

import RS232;

type

UI = cell {RS232}

(out1, out2: port out; in: port in) (*...*)

end UI;

Add = cell(in1, in2: port in; out: port out)

(* ... *)

end Add;

var myUI: UI; add: Add;

begin new(myUI); new(add);

connect(myUI.out1, add.in1);

connect(myUI.out2, add.in2);

connect(adder.result, myUI.in);

end Example.

Cell net

adder

(Adder)

result

in1 in2

interface

(User
Interface)

out1 out2

in

RS232

Sample Code

6

module SimpleCells

import RS232;

type Add = cell (in1, in2: port in; res: port out (* ... *)

end Add;

Mult = cell (in1, in2: port in; res: port out) (* ... *)

end Mult;

Prod*= cellnet (x, y, u, v: port in; res: port out)

var a: Add; m1, m2: Mullt;

begin
new(a); new(m1); new(m2);

delegate(x, m1.in1); delegate(u, m1.in2);

delegate(y, m2.in1); delegate(v, m2.in2);

connect(m1.res, a.in1);

connect(m2.res, a.in2);

delegate(res, a.res)
end Prod;

end SimpleCells

Hierarchic

composition

Sample Code

7

cellnet Sample;

import SimpleCells, RS232;

type

Norm* = cellnet (vX, vY: port in; result: port out)

type

Dup* = cell(in: port in; out1, out2: port out)

var val: LONGINT;

begin

loop in ? val; out1 ! val; out2 ! val end

end Dup;

var s: SimpleCells.Prod; d1, d2: Dup;

begin new(s); new(d1); new (d2);

connect (d1.out1, s.vX);

connect(d1.out2, s.wX);

connect(d2.out1, s.vY);

connect(d2.out2, s.wY);

delegate(vX, d1.in); delegate(vY, d2.in);

delegate(result, s.res);

end Norm;

Wired Cellnet

s

(SimpleCells.
ScalarProduct)

dup1

(Norm.Dup)

dup2

(Norm.Dup
)

in

out1 out2

in

out1 out2

vX wx vY wY

result

norm(Norm)
vX vY

result

Signal

input

Wave

proc_1

QRS

detect

HRV

analysis

Disease

classifier

Wave

proc_2

Wave

proc_8

ECG

bitstream

out

stream

TRM1

TRM2

TRM9

TRM10 TRM11 TRM12

FIFO1

FIFO8

FIFO9

FIFO16

FIFO17 FIFO18

FIFO19

FIFO20

FIFO33

FIFO34

UART

controller CF

controller

LCD

controller

Virtex-5LX50T FPGA

Xilinx ML505 board

RS232

CF

LCD

ECG

Sensor

·

·

·

·

·

·

Hybrid compilation

Computational scheme

Hardware layout on FPGA

Case Study

from Medical IT:

Realtime ECG Monitor

Medical Monitoring with Network On Chip

The Entire System

A2 host OS with GUI sensor control and
medical algorithms<
on Spartan 6 FPGA

Sensors and motors
on bracelet

Use of FPGA Resources

8 physical channels @ 500 Hz sampling frequency each

#TRMs #LUTs #BRAMs #DSPs TRM load

12 13859

(48%)

52

(86%)

12

(25%)

<5%

@116 MHz

Virtex-6 with

500 TRM

capacity!

Power Usage

System Architecture Static

Power (W)

Dynamic

Power (W)

Preconfigured multicore

("TRM12")

3.44 0.59

Dynamically configured 0.5 0.58

86% saving!

Core 0

Core 1

Core 2

Core 3

Core 4

Core 5

Core 6

Core 7

Core 8

Core 9

Core 10

Core 11

Sig

nal

inp

ut

Wav

e

proc

_1

Q

RS

de

te

ct

HRV

analysis

Disease

classifier

Wav

e

proc

_2

Wav

e

proc

_8

More details on Active Cells via

felix.friedrich@inf.ethz.ch

The Swiss Oberon Alumni Community
Picture taken on October 22, 2018

Our Most

Famous

Alumnus

Urs Hölzle, Google No. 8,

Chief Officer of Infrastructure

Conclusions

 No more need to coerce all software to von Neumann

hardware architecture

 New technologies such as FPGA allow adjusting hardware

architecture to specific application, with the benefits of much

better resource and runtime efficiency

 Viable option to use same programming language spirit for both

software and hardware description

Comprehensive system descriptions and hybrid compilers are a

feasible solution

Thank you for your interest and attention

Questions welcome

