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SUMMARY

Coordination of parallel activities on a shared memory machine is a crucial issue for modern software,
even more with the advent of multi-core processors. Unfortunately, traditional concurrency abstractions
force programmers to tangle the application logic with the synchronization concern, thereby compromising
understandability and reuse, and fall short when fine-grained and expressive strategies are needed. This
paper presents a new concurrency abstraction called POM, parallel object monitor, supporting expressive
means for coordination of parallel activities over one or more objects, while allowing a clean separation
of the coordination concern from application code. Expressive and reusable strategies for concurrency
control can be designed, thanks to a full access to the queue of pending requests, parallel execution of
dispatched requests together with after-actions, and complete control over reentrancy. A small domain-
specific aspect language is provided to adequately configure pre-packaged, off-the-shelf synchronizations.
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1. INTRODUCTION

Synchronization of parallel activities in a concurrent system is a fundamental challenge. There are
several dimensions to this challenge. To avoid data races while still allowing shared data, one may
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need to ensure mutual exclusion when accessing the shared structure (e.g. a bounded buffer). To
enhance parallelism, it is often desirable to let multiple threads access simultaneously a shared
data structure whenever data races are known not to occur (e.g. readers and writers). Furthermore,
one may need to coordinate parallel activities in a more complex manner: for instance, to achieve
temporal ordering properties of requests executed over a set of application objects, depending on
application-specific constraints (e.g. dining philosophers).

Using traditional concurrency abstractions such as locks and monitors for expressing elaborate
parallel coordination is cumbersome and requires intrusive changes in the application code, in
particular, if coordination constraints over several objects have to be expressed. Actually, coor-
dination of parallel activities is a specific concern that should ideally be implemented separately
from the application code. Specifying coordination in a clearly modularized manner is important
in order to foster understandability, maintainability, and reuse: objects are independent of how they
are coordinated, and multi-object coordination patterns can be abstracted and reused over different
groups of objects [1,2].

This paper introduces a new concurrency abstraction called parallel object monitor (POM) for
coordination of parallel activities over single objects and groups of objects in shared memory
systems. A POM is said to be parallel because it is used to control the parallel execution of threads,
is said to be object as it provides an object-oriented view of concurrent calls via reified requests and
request queues, and is said to be a monitor because it provides a centralized place for specifying
concurrency control in a thread-safe manner. We show that POMs are (i) expressive because a
POM has full control over the queue of pending requests on coordinated objects and can implement
custom reentrancy policies, (ii) easier to write and understand than existing techniques because
concurrency control is expressed concisely in a single place, (iii) efficient enough because the
overhead of POMs in execution time is reasonable, and in some cases they are faster than legacy
monitors. We provide POM as a library implemented over Reflex, a versatile kernel for multi-
language aspect-oriented programming [3], and configured with a small domain-specific aspect
language. Therefore, off-the-shelf POM schedulers can be reused and applied to components at the
sole cost of proper configuration, while achieving reasonable performance.

Section 2 discusses related work and establishes the main motivation of our proposal. Section 3
presents POM through its main principles and API, while Section 4 illustrates POM through some
canonical examples. Section 5 exposes how high-level concurrency abstractions such as sequential
object monitors (SOMs) [4], chords [5], and synchronizers [1] can be expressed in POM. Section 6
presents the implementation of POM over Reflex and benchmarks validating our proposal. Section 7
discusses some issues and Section 8 concludes with future work.

2. RELATED WORK AND MOTIVATION
2.1. Synchronization mechanisms for mutual exclusion

A great number of mechanisms have been proposed in order to address the mutual exclusion issue,
starting with monitors as invented by Brinch Hansen [6] and Hoare [7]. A more elaborate kind
of synchronization for mutual exclusion, called conditional synchronization, is made possible, for
instance, by guards and guarded commands [8,9]: a boolean expression is associated to an operation



in order to indicate when it may be executed. Another mechanism for concurrency control, which
originated in Simula-67 [10] and the Dragoon language [11], is the concept of schedulers [12], related
tothe actor [13] and active object [14] models. In such approaches, a separate entity called a scheduler
is responsible for determining which and when concurrent requests to a shared object are performed.
Schedulers enable separation of concerns, because the scheduler is defined apart from the applica-
tion logic. However, similar to monitors and guards, schedulers are commonly used to ensure mutual
exclusion on the scheduled object. The recently proposed SOMs [4] also fall into this category.

Modern programming languages such as Java and C* have adopted a flavor of monitors that is
recognized to have a number of drawbacks [4]; these monitors are a low-level, error-prone abstrac-
tion that implies tangling functional code with synchronization code, breaking modularization.
Also, Java monitors perform poorly in situations with high lock contention due to the notifyAll
primitive, which may entail a number of useless context switches.

The new concurrency utilities coming with Java 5 standardize medium-level constructions, such
as semaphores and futures, and add a few native lower-level constructions, such as locks and
conditions, which can be used to create fast new abstractions. The idea here is that people can use
the appropriate abstractions for a given problem, and hence no particular concurrent paradigm is
promoted. Such basic synchronization facilities are Hoare’s style monitors. Still, the lowest-level
Java 5 lock can be more fragile than before, because programmers are responsible for explicitly
asking and releasing monitors, while with synchronized blocks the releasing of monitors is
implicitly triggered at the end of such blocks. In fact, these new utilities favor flexibility and
efficiency at the expense of increased verbosity, with a risk of fragility. Actually, programmers are
rather expected to use higher-level abstractions whenever possible.

2.2. Parallel coordination with mutual exclusion mechanisms

Although the above mechanisms especially target the mutual exclusion problem, they can be used for
coordination of parallel activities, such as in the classical readers and writers or dining philosophers
problems. These solutions introduce a controller object where coordination is defined. The methods
called on the controller are executed under mutual exclusion, ensuring that coordination constraints
are not violated. The problem of these approaches is that clients have to be modified to explicitly
communicate with the controller. For instance, in the readers and writers problem, clients need
to first ask for read or write access to a controller (e.g. enterRead, enterWrite) before
proceeding on the shared, unsynchronized structure. Furthermore, they need to notify the controller
when they exit the shared structure (e.g. exitRead, exitWrite).

Therefore, from a software engineering viewpoint, mechanisms for mutual exclusion do not make
it possible to achieve a clean separation of the synchronization concern when parallel coordination is
needed. Even scheduler-based approaches such as SOM [4], which do achieve separation of concern
for mutual exclusion scenarios, fall short when dealing with coordination of parallel activities.

2.3. Synchronization mechanisms for parallel coordination
Coordination of parallel activities refers to the synchronization of methods potentially executing

simultaneously (e.g. read methods in the reader—writers problem). We name such a case parallel
coordination, and review below two frameworks allowing its expression.



2.3.1.  Synchronizers

The synchronizers of Frglund and Agha [1] are the proposal that is most related to ours as it aims at
separate specification and high-level expression of multi-object coordination. Coordination patterns
are expressed in the form of constraints that restrict invocation of a group of objects. Invocation
constraints enforce properties, such as temporal ordering and atomicity, that hold when invoking
objects in a group. Synchronizers generalize the ideas of per-object coordination by means of synchro-
nization constraints [15,16] to the case of object groups. Furthermore, synchronizers involve not only
the state of coordinated objects but also the invocation fistory of these objects. Although the declara-
tiveness of synchronizers is appealing, a number of limitations still exist: fairness cannot be specified
at the application level, but rather rely on implementation fairness; history-based strategies must be
manually constructed; reentrancy cannot be customized; and finally, although synchronizers encap-
sulate coordination, their usage has to be explicit in the application, requiring intrusive changes to
the existing code. Furthermore, the proposed implementation compiles away synchronizers, making
them different from normal objects: other objects cannot interact with them via message passing. We
will come back to synchronizers to show how they can be expressed with POM (Section 5).

2.3.2. Chords

Chords were first introduced in Polyphonic C¥, an extension of the C* language. Chords are join
patterns inspired by the join calculus [17]. Within Polyphonic C¥, a chord consists of a header and
a body. The header is a set of method declarations, which may include at most one synchronous
method name. All other method declarations are asynchronous events. Invocations of asynchronous
methods are non-blocking, while an invocation of a synchronous method blocks until the chord is
enabled. A chord is enabled (and its body consequently executed) once all the methods in its header
have been called. Method calls are implicitly queued until they are matched up. Chords enable
coordination of parallel activities because multiple enabled chords are triggered simultaneously.
However, although chords make it possible to concisely and elegantly express several concurrent
programming problems, there are some classical problems that are difficult to solve with chords,
such as implementing a buffer which ensures servicing of requests in order of arrival. Also, the use
of chords over a group of objects has not been considered. Finally, chords as a language extension
are not meant to achieve separation of the synchronization concern: a class definition with chords
is a mixture of functional and synchronization codes.

2.4. Motivation
This paper proposes an abstraction for concurrent programming that aims at solving the problems

mentioned above: supporting expressive means for coordination of parallel activities over one or
more objects, while allowing a clean separation of the coordination concern from application code.

3. PARALLEL OBJECT MONITORS

POMs are a high-level abstraction for controlling synchronization of parallel threads. POM is
inspired by the scheduler approach, in particular SOM and the synchronizers of Frglund and Agha.



POM retains from SOM the notion of explicit access to the queue of pending requests and expres-
sive means to specify scheduling strategies. But, conversely to SOM, POM does not ensure mutual
exclusion of requests themselves: a POM can dispatch several requests in parallel. Still, concur-
rency control is specified in a single place—a scheduler—and executed sequentially, in mutual
exclusion.

3.1. Main ideas

A POM is a low-cost, threadless scheduler controlling parallel invocations on one or more standard,
unsynchronized objects. A POM is therefore a passive object. A POM controls the synchronization
aspect of objects in which functional code is not tangled with the synchronization concern. A POM
is a monitor defining a scheduling method responsible for specifying how concurrent requests should
be scheduled, possibly in parallel. A POM also defines a leaving method, which is executed by
each thread once it has executed its request. Such methods are essential to the proposed abstraction
as it makes it possible to reuse functional code as it is, adding necessary synchronization actions
externally. A POM system makes it possible to define schedulers in plain Java, and to configure the
binding of schedulers to application objects either in plain Java or using a convenient lightweight
domain-specific aspect language.

Figure 1 illustrates the working of a POM. When a thread invokes a method on an object
controlled by a POM (1), the thread is blocked and the invocation is reified and turned into
a request object (2). Requests are then queued in a pending queue (3) until the scheduling
method (4) grants them permission to execute (5). The scheduling method can trigger the execu-
tion of several requests. All selected requests are then free to execute in parallel, run by the thread
that originated the call (6). Note that, if allowed by the scheduler, new requests can be dispatched
before a first batch of selected request has completed. Parallel execution of selected requests in
POM is in sharp contrast with SOM, where scheduled requests are executed in mutual exclusion
with other scheduled requests [4]. Finally, when a thread has finished the execution of its associated
request, it has to run the leaving method before leaving the POM (7). To run the leaving method, a
thread may have to wait for the scheduler monitor to be free (a POM is a monitor), since invocations
of the scheduling method and the leaving method are always safely executed, in mutual exclusion.

O/} schedule() POM ( %th g
rea
(3) (4) leave()
OOO ~ Z— method call

(7)

base object
execute(req) aﬂer execution '\ Q !
O request (thread blocked)

@ thread executing a request

Figure 1. Operational sketch of a parallel object monitor.

executing
threads



Before leaving the monitor, a thread may have to execute the scheduling method again. The fact
that a thread spends some time scheduling requests for other threads (recall that the scheduler is a
passive object) implies that programmers should preferably write simple scheduling methods.

Figure 2 shows a thread diagram of two threads T1 and T2 coordinated by a POM. A thread
diagram pictures the execution of threads according to time by picturing the call stack, and showing
when a thread is active (plain line) or blocked waiting (dash line). Let us consider that the POM
ensures the following coordination constraint: two operations a and b must be dispatched in pair.
T1 and T2 are two threads invoking a and b, respectively. First, let us consider that the POM is
free when T1 calls a. T1 directly executes the scheduling method, but its associated request is not
granted permission to execute (1). While T1 is blocked, T2 calls b on an object controlled by
the POM. It executes schedule: this execution of the scheduling method results in both requests
being selected (2). Hence, T1 and T2 execute their respective requests in parallel (3). When T1
completes the execution of its associated request, it executes the leaving method and the scheduling
method. These executions are performed within the scheduler monitor, hence in mutual exclusion
with other invocations of the scheduling and leaving methods: when T2 finishes, it is blocked
until T1 releases the monitor (4), before effectively executing in turn the leaving and scheduling
methods (5).

Defining a POM consists in specifying when requests should be granted permission to execute in
the scheduling method, and optionally, specifying a code that must be executed each time a request
is completed, in the leaving method. Figure 3 is an example, in pseudo-code, of a scheduling method
specifying a fair strategy for the readers and writers problem. The leaving method is not shown, as
it is only used to update the state of the scheduler (the complete POM implementation is, however,
shown later in Figure 8).

T1 T2

a0
D) schedule()

b

@ S - schedule()
(€))

4 Lifl\;zaeo Leave()
) schedule()

Figure 2. Two threads coordinated by a POM (underlined method calls are performed in mutual
exclusion within the scheduler monitor).



scheduling method:
if no writer executing then
execute all readers, older than oldest writer
if no reader executing then execute oldest writer

Figure 3. Pseudo-code of a fair scheduling strategy for readers and writers.

POM Principles

1. Any method invocation on an object controlled by a POM is reified as a request and
delayed in a pending queue until scheduled.

2. The scheduling method is guaranteed to be executed if a request may be scheduled.

. All scheduled requests are executed by their calling thread, in parallel.

4. A POM is by default not reentrant: reentering calls are blocked and subject to scheduling.
Reentrancy can be control on a per-case basis.

5. The scheduling and leaving methods are executed in a thread-safe manner within the
scheduler monitor, but in parallel with executing requests.

w

POM Guarantees

1. Given that the scheduling method can schedule several requests at a time:

o As soon as a request is given permission to execule, it starts execution in parallel
with already-executing requests. If the thread owning such a request is the actual
thread ezxecuting the scheduling method, then the request starts execution as soon as
the thread ezits from the scheduling method.

e [f a new request arrives, the scheduling method is called, even if all scheduled requests
did mnot complete execution.

2. There is no unbounded busy execution of the scheduling method.

. When a request ends execution, the leaving method is executed by its calling thread.

4. The scheduling method is executed by one of the caller threads, in mutual exclusion with
the leaving method. The caller thread executing this method is unspecified.

5. After a caller thread has executed its request, it is guaranteed to return after one execution
of the leaving method and at most one execution of the scheduling method.

6. Whenever a POM is idle, if a request arrives and is granted permission to execute by the
scheduling method, the request is executed without any context switch.

w

Figure 4. Main POM principles and guarantees.

A POM is a parallel monitor because it allows several threads to execute concurrently. Also, an
executing request may not be run to completion: a POM is by default non-reentrant?; therefore, a
thread already executing a request may be blocked if it calls a method controlled by the same POM.
Figure 4 summarizes the main principles and guarantees of POM. The principles are elements

fRather, control is given over custom reentrancy policies, as discussed later in Section 4.4.



describing the fundamental concepts to consider when programming with POMs; they have to
be taken into account to define correct POM synchronizations. The guarantees, in contrast, come
with a given implementation: they describe extra properties that are desirable to obtain an efficient
implementation, especially minimizing context switches. Recall that our approach is based on
cooperative scheduling, as in SOM [4], where the scheduling job is performed by client threads (the
scheduler object is itself threadless). Therefore, the guarantees clarify assumptions that could or
should not be made by programmers, such as the exact thread executing the scheduling or leaving
methods.

3.2. Main Entities and API

We now present the main elements and API of a POM library (Figure 5) in order to go through
concrete examples afterwards.

3.2.1. Defining a POM

A POM is defined in a class extending from the base abstract class POMScheduler. A POM must
define the no-arg schedule method, in which the scheduling strategy is specified. The basic idea
is that a scheduler can grant permission to execute to one or more pending requests, stored in a
pending queue. Requests are represented as Request objects (Figure 5). The scheduling decision
may be based on requests characteristics as well as on the state of the scheduler itself, or on any
other external criteria. A scheduler can obtain an iterator on the pending queue using the
iterator () method, and can then examine request objects in order to decide which ones should
be granted permission to execute, and which ones should fail, causing the thread that originated the
request to throw a runtime exception. A request object offers a protocol for introspection, which
gives access to, e.g. the actual parameters of the invocation and its calling thread. Once a request
is selected for execution, it is removed from the pending queue.

POMScheduler Request
behavior execution introspection
schedule(): void execute(Request): void getName(): String
Leave(Request): void executeAlL(*): int getParameter(int): Object
queue management executeO}dest(i: boolian getThread(): Thread
iterator(): RequestIterator executeOldest(*): boolean is(Category): boolean
hasRequest(): boolean executeYoungest(): boolean
th t&)' it executeYoungest(*): boolean — reentrancy
requesttoun s executeOlderThan(*,*): boolean reentering(): boolean
reentrancy executeAllOlderThan(*,*): int getParent(): Request
executeAllReentering(): int executeYoungerThan(*,*): boo}ean
executeAllYoungerThan(*,*): int -
failure <<interface>>
fail(Request, RuntimeException): void RequestFilter
- - accept(Request): boolean
*: the parameter can be a string (request name), a request filter, or a category.

Figure 5. Main entities provided by a POM framework.



3.2.2.  Specifying after behavior

In some cases, the scheduler may maintain a state for determining which requests shall be granted
permission to execute; such a state may have to be updated when requests finish executing. In
POM, this is done in the leaving method, 1eave, which is executed by caller threads each time
they complete the execution of their associated request. This method receives as parameter the
request that has been executed. Since this method is defined in the scheduler and is typically used
to update its state, it is executed within the monitor of the scheduler, in mutual exclusion with other
invocations of the leaving and scheduling methods.

3.2.3. Defining a scheduling strategy

A set of methods is available to grant permissions to execute pending requests. The most
basic, execute, triggers the execution of the request given as parameter, by waking up its
associated thread. More expressive methods are also provided. Some methods may result in a
single request being executed, such as executeOldest (), which triggers the execution of the
oldest request in the pending queue. These methods return a boolean that indicates whether a
request was effectively given permission to execute or not. For instance, executeOldest ()
returns false if the queue is empty. Other methods may grant permission to several requests
at a time: they return the number of requests that have been effectively granted permis-
sion to execute. An example is executeAllOlderThan, which takes as parameters two
criteria for selecting requests, and grants permission to all requests in the pending queue that
meet the first criterion and that are older than the first pending request meeting the second
criterion.

If no request is scheduled for execution at a given time, all the threads that called a method
supervised by a POM are blocked. Our implementation of POM supports a debug mode in which a
warning is issued whenever no request is scheduled after the execution of the schedule () method.
Although not necessarily an error in itself, this can help in identifying potentially abnormal
situations.

3.2.4. Selecting a request

There are basically three ways of specifying a criterion for selecting a request. First, one can pass
the name of the requested method as a string. Second, a request filter can be given. A request filter
implements the RequestFilter interface (Figure 5), which declares the accept method. For
instance, executeAll (rf) triggers the execution of all requests in the queue that are accepted
by the rf filter.

Finally, one can specify a method category. Method categories are used to partition the set of
methods in a given class into meaningful subsets, in order to enhance the potential of reuse and
robustness with regards to change of off-the-shelf POM schedulers. We illustrate method categories
in Section 4.2.

The protocols of POMScheduler and Request dealing with reentrancy (Figure 5) are
discussed in Section 4.4.



SCHED_DECL := "schedule:" APP_CLASS
[ "on:" METHOD_LIST ]7? "with:" SCHEDULER_CLASS
[ CAT_DECL ]* [ "bygroup:" GROUP_CLASS ] ";"
CAT_DECL := "category:" CAT_ID "is:" METHOD_LIST
METHOD_LIST := METHOD_ID | METHOD_ID "," METHOD_LIST

Figure 6. BNF syntax of the POM configuration language.

3.2.5. Using POM

POM is implemented on top of Reflex, a versatile kernel for multi-language aspect-oriented
programming (Section 6.1). Similar to SOM, we designed a small language to configure POM,
which can be seen as a very simple domain-specific aspect language. The syntax of this language is
overviewed in Figure 6. As an alternative, it is possible to place Java 5 annotations directly in front
of the classes and methods to synchronize. We illustrate the use of both the configuration language
and the annotations along the various examples in the paper. Finally, POM can also be configured
via a Java API exposed by the POM class, which we omit for clarity in the examples.

4. CANONICAL EXAMPLES

This section illustrates POM via a number of small cases: ensuring mutual exclusion, managing
parallel dispatch, performing group synchronization, and controlling reentrancy. We refer to a
simple Dictionary data type, with operations query, define, size, and delete, in which
concurrency is not dealt with.

4.1. Mutual exclusion

We show how POM can easily be used to ensure a simple synchronization concern: the mutual
exclusion of threads executing the dictionary methods (Figure 7).

The state of the MutualExclusionSched consists of a boolean variable (working) that is
true if and only if there is one thread executing a dictionary method. The scheduling method only
grants permission to execute a request when working is false. Such a permission is granted by
calling executeOldest (Figure 7 (*)): if the pending queue is not empty, the oldest pending
request is executed; otherwise, nothing happens. The method executeOldest returns a boolean
value indicating whether a request actually received permission to execute. This boolean value is
used to update the state of the scheduler. The 1 eave method updates the value of working to false
in order to state that no request is in execution. There is no need to deal with granting permissions
to execute in the leaving method because the scheduling method is called immediately after the
leaving method returns. The following POM declaration using the language of Figure 6 associates
aMutualExclusionSched instance per instance of Dictionary:

schedule: Dictionary with: MutualExclusionSched;

The MutualExclusionSched suffers from an important issue: reentrant method invocations
result in a deadlock. For instance, if def ine invokes query for checking whether a key is already



public class MutualExclusionSched extends POMScheduler {
private boolean working = false;
public void schedule(){
if (!working) working = executeOldest(); (*)
X
public void leave(Request req){ working = false; }
}

Figure 7. Ensuring mutual exclusion with POM.

public class RWScheduler extends POMScheduler {
public static Category READER = category();
public static Category WRITER = category();
private int readers = 0;
private boolean writing = false;

public void schedule(){
if (lwriting) {
readers += executeAllOlderThan(READER, WRITER); (*)
if (readers == 0) writing = executeOldest(WRITER);
}}
public void leave(Request req){
if (req.is(READER)) readers--;
else if(req.is(WRITER)) writing = false;
T}

Figure 8. Safely dispatching readers in parallel with POM.

defined, the scheduling method is called twice, once for define and once for query. The first
execution of schedule grants permission for execution, but not the second one. Because define
has not finished execution, schedule finds the monitor in a working state, and hence both requests
are suspended forever. We address reentrancy in Section 4.4.

4.2. Parallel dispatch

Considering a usage pattern of dictionaries where queries are performed much more frequently than
definitions, and both operations are time consuming, it becomes interesting to dispatch all queries
in parallel. This scenario is known as the readers and writers problem. Readers are invocations
of observer methods (e.g. query). Executing them in parallel is possible because they do not
produce data races. Writers are invocations of mutator methods (e.g. define). They may produce
data races when executed in parallel; hence, they must be executed in mutual exclusion with other
readers and other writers.

The POM scheduler safely dispatches readers in parallel while ensuring mutual exclusion when a
writer executes (Figure 8). The implemented strategy is fair: only readers that are older than the first
writer in the pending queue are granted permission to execute (*). This ensures that writers never
starve. Similar to the scheduler of Figure 7, RWScheduler is not reentrant and hence deadlocks
on reentrant calls. A full version is presented in Section 4.4.



As mentioned earlier, method categories make it possible to enhance reuse of synchronization
policies. For instance, the RWScheduler (Figure 8) is a generic off-the-shelf scheduler that can
be reused to deal with any class having multiple observer and mutator methods. It is not restricted to
a dictionary class, because it does not rely on particular method names. Rather, the scheduler relies
on two method categories, a READER category for observer methods and a WRITER category for
mutator ones. Categories in a scheduler are simply defined as static variables of type Category
and can then be used to select requests.

The binding between categories in a scheduler and actual methods in base classes can be carried
out declaratively using the POM configuration language introduced in Figure 6. Note that a scheduler
can also explicitly specify the methods that belong to a given category, but then reuse is lost.
For instance, configuring the off-the-shelf RWScheduler to coordinate parallel activities over
instances of Dictionary is done as follows':

schedule: Dictionary with: RWScheduler

category: READER is: query, size
category: WRITER is: define, delete ;

We can reuse the category-based scheduler RWScheduler to synchronize another data structure
by simply defining categories appropriately. For instance, the following is the definition of a Stack
class, which uses the annotation-style definition of POM:

@POMSyncClass (scheduler = RWScheduler.class)
public class Stack {
@POMSync (category
@POMSync (category
@POMSync (category
@POMSync (category
}

"WRITER") public void push (Object o) {...}
"WRITER") public Object pop(){...}
"READER") public Object peek(){...}
"READER") public boolean isEmpty () {...}

The class to synchronize is marked with the POMSyncClass annotation, which also indicates
the class that acts as the scheduler (here, RWScheduler). The POMSync annotation for methods
is used to selectively mark methods to synchronize, and is used here with the optional category
attribute to define the READER and WRITER categories.

4.3. Group synchronization

A typical example of parallel coordination among several objects is the dining philosophers problem.
The dining philosophers problem consists of five philosophers sitting around a table, with five
available sticks to eat Chinese food. Philosophers are active objects that spend their time looping
over thinking and then eating. The philosopher at seat i needs the two sticks around him to eat (i
and (i 4+ 1)%5). A typical implementation of the Philosopher class is given in Figure 9.

The synchronization constraints of this problem are that two philosophers cannot eat with the same
stick at the same time, philosophers must not deadlock and must not starve. Using classical monitors,

$Note that a schedule declaration does not define any namespace of its own: method names (e.g. query, size, etc.)
are searched in the scheduled class (e.g. Dictionary), and category names (e.g. READER) are searched in the public
static fields of the scheduler class (e.g. RWScheduler). It is currently not possible to disambiguate between overloaded
methods; hence all the methods that have the same name are selected at once.



public class Philosopher extends Thread {
int seat; Table table;
public Philosopher(Table t){
table = t; seat = table.getSeat(); start(); }
public void run(){
for(;;){ eat(); think(; } }
// eat, think, getSeat, getTable,
}

Figure 9. A non-intrusive implementation of philosophers with POM.

if we do not want to manually handle low-level synchronization in the eat method itself, the solu-
tion to this problem relies on the introduction of a controller object to which philosophers explicitly
request and release their sticks. This is similar to the readers and writers problem discussed previously.
Therefore, without POM, the code of the for-loop of Figure 9 has to be rewritten as follows:

int idl = seat; int id2 = (seat+1)%5;

for(;;){ controller.pick(idl, 1id2); eat();
controller.drop (idl, 1d2); think(); }

Although the eat method is not rewritten and the synchronization logic is encapsulated in the
controller, such an intrusive approach is problematic: existing client code has to be manually updated
to add synchronization code. Conversely, with POM, the code of philosophers is left untouched
without any extra code.

PhiloSched (Figure 10) implements a fair solution to the philosophers problem: a request
is granted execution if both requested sticks are free and none have been previously requested by
another philosopher. In the scheduling method, the local variable array reserved, created every
time an iteration over the request queue begins, is used for ensuring that sticks are granted in the
desired order. When a stick is requested and cannot be granted because it is still busy, it is tagged as
‘reserved’. A request including a previously reserved stick is not granted permission even though
the stick may be free, because the stick must first be granted to the philosopher that first requested it.
This is to ensure fairness; otherwise, starvation may occur. POM allows fairness to be expressed at
the application level, according to application-specific policies. Note that a more efficient solution
can be devised if the constraint on stick reservation is relaxed.

To have a single scheduler controlling the concurrent activities of a group of philosophers, POM
uses the grouping facility provided by Reflex. Basically, a group can be defined intentionally by an
association function:

public class TableGroup implements GroupDefinition {

public Object getGroup (Object obj) {

return ((Philosopher) p).getTable();
1}

The getGroup method returns an object whose identity corresponds to the group to which the
object passed as parameter belongs. In the case of philosophers, a group corresponds to a table.
Reflex associates one instance of scheduler per group, making it possible for different groups of
philosophers to be controlled by their own specific POM instance. As a matter of fact, only requests



public class PhiloSched extends POMScheduler {
boolean[] busy = new boolean[5]; // false

public void schedule(){
boolean reserved[] = new boolean[5]; // false
RequestIterator it = iterator();
while(it.hasNext()){
Request req = it.next();
Philosopher p = (Philosopher) req.getReceiver();
int idl = p.getSeat(); int id2 = (id1+1)%5;
if ('busy[id1] && 'busy[id2] && !reserved[idl] && 'reserved[id2]){
busy[id1] = busy[id2] = true; execute(req); // granted
}
else { // not granted but reserved
reserved[idl] = reserved[id2] = true;
}r}
public void leave(Request req){
Philosopher p = (Philosopher) req.getReceiver();
int idl = p.getSeat(); int id2 = (id1+1)%5;
busy[id1] = busyl[id2] = false;
T}

Figure 10. Scheduler for the philosophers.

for eat in Philosopher must be subject to scheduling. In the small configuration language of
POM (Figure 6), the whole setting is expressed as follows:

schedule: Philosopher on: eat with: PhiloSched bygroup: TableGroup;

This code states that eat requests on Philosophers are scheduled by a PhiloSched instance
attached to each group as defined by TableGroup. It uses two extensions to the POM configuration
language: on:, to restrict control by the scheduler to some method(s); and bygroup:, to specify
that the association between a base object and a scheduler is neither per instance nor per class, but
rather defined by a group. The same effect can be achieved using annotations, using the group
attribute of the POMSyncClass annotation to specify the group definition:

@POMSyncClass (scheduler = PhiloSched.class, group = TableGroup.class)
public class Philosopher { @POMSync public voideat() {...} ...}

4.4. Reentrancy control

As mentioned earlier, a POM is not intrinsically reentrant. Rather, the programmer can have explicit
control over reentrancy. When custom reentrancy policies are needed, POM exposes an API via
Request objects. It is possible to determine if a request is reentrant by calling its reentering
method. A convenience method executeAllReentering automatically triggers the execution
of all reentering requests currently in the pending queue. Also, POM maintains the complete nesting
structure of reentering requests on a per-thread basis: a reentering request has a reference to its
parent request (accessed with getParent).

The control given over reentrancy makes it possible to express various reentrancy policies. Reen-
trancy can depend on both the name of the requested method and the identity of the calling thread,
e.g. to allow only recursive method calls to reenter, or on some parameter of the requested method.



public class ReentrantRWSched extends RWScheduler {
public void schedule(){
RequestIterator it = iterator();
while(it.hasNext()){
Request req = it.next();

if (req.reentering()){ (€D)
checkNoWriteAfterRead(req) ; (2)
execute(req); (3
F}
super.schedule(); (4)
}
public void leave(Request req){
if (!req.reentering()) super.leave(req); (5)
¥

void checkNoWriteAfterRead(Request req){
if(req.is(WRITER) && req.getParent().is(READER)){
fail(req, new RuntimeException("reader cannot invoke writer!"));

3

Figure 11. A reentrant scheduler for readers and writers.

Using both thread identifier and invocation parameters to determine reentrancy can be useful when
considering a resource allocation system: when a resource r is asked for by calling grant (r),
then if a thread owning a resource asks again for the same resource, this last request should be
reentrant and not block the thread. Conversely, asking for another resource may block.

In the case of readers and writers, requests should be reentrant, except in one forbidden
case: a reader should never invoke a writer, as this would break the data race free property.
ReentrantRWScheduler (Figure 11) is a reentrant extension of RWScheduler (Figure 8). If a
requestis reentering (1) ,itisexecuted (3).When all pending reentering requests have been granted
execution, the scheduling method of the superclass is invoked (4) . The leaving method does nothing
for reentrant requests, and reuses the original leaving method for non-reentrant ones (5) . Instead of
relying on the assumption that a reader never calls a writer, ReentrantRWSched actually checks
that this constraint is not violated (2).The checkNoWriteAfterRead method causes the thread
that issued an illegal request to throw an exception, because the parent of a reentrant writer cannot
be a reader!. Being able to eagerly detect incorrect reentrancy patterns is particularly interesting to
avoid mysterious deadlocks and data races, which are always hard to debug.

Finally, when a scheduler needs to be completely reentrant, it is enough to define it as a subclass
of ReentrantPOMScheduler, a subclass of POMScheduler.

5.  CONCURRENCY ABSTRACTIONS IN POM

We now discuss the implementation of three high-level concurrency abstractions with POM: SOMs
[4], chords [5], and synchronizers [1].

11t would even be possible to program a specific policy to handle this case: waiting for all other current reader requests to
complete and then execute the writer at hand. In the current version, we choose to throw a runtime exception; hence, it has to
be handled by callers.



5.1. Sequential object monitors

SOMs [4] are a high-level abstraction offering fully sequential monitors: the SOM programmer gets
away from any code interleaving, because requests are always executed in mutual exclusion and
run to completion. The latter means that when a request starts executing, other requests cannot start
executing until it completes. SOM offers an API similar to that of POM: a scheduler implements
a scheduling method where the scheduling strategy is defined. But instead of granting requests the
permission to start executing in parallel with others (with execute), the scheduling method of
a SOM is used to mark requests (with schedule) that should be executed, in their scheduling
order, in mutual exclusion with other requests and the scheduling method.

Because POM is more general, lower level, than SOM, it is feasible to express SOM with POM.
Figure 12 shows the POM implementation of the base scheduler class of SOM, SOMScheduler.
This exercise highlights the very difference between both approaches, summarized by the following
equation:

SOM = POM + mutual exclusion + reentrancy

e To ensure mutual exclusion, a scheme similar to that in Figure 7 is used: a boolean working
variable indicates whether the monitor is busy or not (1) . Because the scheduling method of
SOM, renamed somSchedule for clarity, can schedule several methods at a time, a queue of
scheduled requests is maintained; it is called the ready queue (2). In the scheduling method
of SOM, a request is scheduled via calls to schedule (Request) (7). This method moves
the given request from the pending queue (common to POM and SOM) to the ready queue
(specific to SOM). The somSchedule method is invoked only when all previously scheduled
requests have been executed, that is to say, when the ready queue is empty (4). Otherwise,
scheduled methods are executed in their scheduling order (5).

public abstract class SOMScheduler extends POMScheduler {
private boolean working = false; (1)
private RequestQueue readyQueue = new RequestQueue(); (2)

public final void schedule(){

if (working) executeAllReentering(); (3

else {
working = true;
if (readyQueue.isEmpty()) somSchedule(); (4)
working = !readyQueue.isEmpty(); // queue may have changed
if (working) execute(readyQueue.remove(0)); (5)

}

public abstract void somSchedule(); // defined by SOM user
public final void leave(Request r){

if (!r.reentering()) working = false; (6)
}
protected final void schedule(Request r){ €p)
remove(r); readyQueue.add(r);
}}

Figure 12. Implementation of the SOM scheduler in POM.



e To ensure reentrancy, when the monitor is busy, reentering requests are immediately executed
(3) and do not free the monitor when leaving (6) . Reentrancy is compulsory to achieve run
to completion of scheduled requests.

The very concise implementation of SOM in POM illustrates well the fact that SOM is a higher-
level abstraction than POM. This makes SOM easier to use and understand, while POM is a more
versatile abstraction, where the programmer has explicit control over the form and degree of mutual
exclusion and reentrancy that are required in a particular situation.

5.2. POM chords

POM makes it possible to formulate an elegant variation of the chords of Polyphonic C? [5]. First
of all, in POM chords, chord-related logic is defined in the scheduler, leaving the base code intact
(for instance, a dictionary class), as opposed to the language extension approach of Polyphonic
CF. In POM chords, events can be triggered before and after invocations of methods on an object
controlled by a chord scheduler. Before-events correspond to requests before execution, and are
synchronous because they may block; conversely, after-events are asynchronous. Before- and after-
events can be conveniently defined to correspond to method categories (Section 4.2). In addition,
the chord scheduler can manage infernal events, which are used to encode the internal state of the
scheduler. Internal events are necessarily asynchronous because otherwise the scheduler is bound
to deadlock. A chord is defined similarly to Polyphonic CF, that is, by defining a body whose
execution is conditioned to the occurrence of a given set of events. In POM chords, however, a
chord body can only contain logic to trigger asynchronous events.

The solution to the readers and writers problem with POM chords is given in Figure 13. Similar
to Figure 8, this scheduler relies on two method categories, READER for reader methods (1)
and WRITER for writer methods (2). The events shared and exclusive are defined as
before-events of these categories (3,4), while releaseShared and releaseExclusive
are after-events (5, 6) . Finally, the state of the scheduler is encoded with the use of two internal
asynchronous events, sharedRead and idle (7, 8).

Chords themselves are defined in the de f ineChords method. The five chords of the Polyphonic
C* implementation [5] in POM chords are shown. The mapping from Polyphonic C* syntax to
POM chords is straightforward. Defining a chord consists in:

e creating a new chord object by calling chord, specifying the first event of the chord, and
aggregating other events in the chord via the and method (e.g. (9));

e setting the chord body with body (b), where b is an object implementing the Body interface.
This interface declares a single exec method in which the chord body is specified. In the
body, events are triggered by invoking trigger on them, possibly specifying parameters
(e.g. (10)). Furthermore, the body can access the parameters of the event occurrences that
enabled the chord (e.g. (11)).

A sketch of the implementation of the chord scheduler in POM is given in Figure 14: we
show only the scheduling and leaving methods. A chord scheduler maintains a mapping of cate-
gories to associated events (if any), which is filled by the before and after methods (recall
Figure 13 (3)—-(6)).



public class RWChordScheduler extends ChordScheduler {
static Category READER = category(), WRITER = category(); (1)(2)

Event shared = before(READER); (3)
Event exclusive = before(WRITER); (4)
Event releaseShared = after (READER); (5)
Event releaseExclusive = after (WRITER); (6)
Event sharedRead, idle = event(); (7)(8)

void defineChords() {
chord(shared) .and(idle) .body(new Body(){ void exec(){ 9)
sharedRead.trigger(1);}}); (10)

chord(shared) . and (sharedRead) .body (new Body(){ void exec(){
int n = sharedRead.getIntParam(); (11
sharedRead.trigger (n+1);}});

chord(releaseShared) .and (sharedRead) .body(new Body(){ void exec(){
int n = sharedRead.getIntParam();
if (n == 1) idle.trigger();
else sharedRead.trigger(n-1);}});

chord(exclusive) .and(idle);
chord(releaseExclusive) .and(idle) .body (new Body (){ void exec(D{
idle.trigger();3}});

1D

Figure 13. Scheduler for the readers and writers problem with POM chords.

public abstract class ChordScheduler extends POMScheduler {
public void schedule() {
Request req;
while((req = getOldest()) != null){
BeforeEvent e = getBeforeEvent(req); (1
if (e == null) execute(req); (2)
else {
e.triggerWith(req); (3)
remove (req) ; (4)
2
while(!candidateChords.isEmpty ()){ (5)
for(Chord ¢ : candidateChords){
if (isEnabled(c)) c.play(); (6)
candidateChords.remove(c); ¢p]
}r}
public void leave(Request req) {
Event e = getAfterEvent(req); (8)
if (e != null) e.trigger(req.getParams()); 9
}}

Figure 14. Sketch of the chord scheduler in POM.

The scheduling method proceeds in two phases: first, all requests that have no associated before-
event (1) are directly executed (2); otherwise, the before-event is triggered (3), passing the
request as parameter, and the request is removed from the pending queue (4) . Triggering an event
consists in publishing a token that can be consumed by chords, and updating the set of potentially



enabled chords, candidateChords, i.e. chords for which at least one token of each event is
available. Second, the scheduler repeatedly iterates over this set until it is empty (5). If a chord
is enabled, it is ‘played’ (6): the associated event tokens are effectively consumed, and the chord
body is executed. A chord present in this set may not be enabled because another chord may have
just consumed some tokens needed by this chord. Then, the chord is removed (7). The chord
scheduler uses bit masks to efficiently determine whether a chord is enabled, as explained in [5].
The leaving method is trivial: if a request completing the execution has an associated after-event
(8), this event is triggered, with the parameters of the request (9).

This exercise shows the expressiveness of POM: a chord-like abstraction is concisely expressed
with POM. The variation of chords we have exposed differs from the chords of Benton et al.
by the fact that a chord may be made up of different synchronous events. This is made possible
because the synchronization strategy is expressed outside the functional code; hence, there is no
issue about which return value to take into account. Actually, the chords of Polyphonic C* and
POM chords are two different, although similar, abstractions, with potentially different applica-
tion scenarios. Finally, it has to be noted that our approach does not rely on an extended base
language with its own extended compiler. Therefore, a number of guarantees cannot be provided
at the compiler level; for instance, compilation cannot ensure that the asynchronous methods
have a void return type. In our implementation, we can ensure such guarantees at runtime, via
dynamic checks (e.g. relying on the Java reflection API): whenever a binding between a base object
and POM is done, checks are performed and runtime warnings/errors are generated in case of
violations.

5.3. Synchronizers

The synchronizers of Frglund and Agha offer a declarative interface to specify multi-object coor-
dination [1]. We now explain how the features of synchronizers are supported by POM. The
synchronizers’ definition language supports three operators of interest to us here: updates to
update the state of the synchronizer, disables to disallow execution of certain methods (in a
guard-like manner), and atomic to trigger several methods in parallel in an atomic manner.

The updates operator is trivially supported by POM because a POM is an object, and is always
accessed in mutual exclusion. This also ensures that guard-like conditions associated with the
disables operator are evaluated in mutual exclusion. In the case where history-based coordination
is required, the state of the synchronizer must be manually updated; this is similar in POM, but
POM goes further by providing access to the queue of pending requests: therefore, one can also
base coordination on the state of the pending queue and on the relative order of request arrival. This
is not feasible with synchronizers. Guard-like conditions for the di sables operator is expressed
in POM as request filters operating on the pending queue, as in [4].

Finally, the atomi c operator is but one pattern of coordination that can be expressed with POM.
Given a batch of requests to be executed atomically (none or all at once), a POM proceeds as
follows: all requests from the atomic batch are blocked (i.e. not granted permission to execute)
until the batch is complete; when this occurs, the POM switches to a blocking state in which all
new incoming requests are blocked; all requests from the batch are granted permission to execute,
and the POM monitors the end of their execution in the leaving method; once all requests in the
atomic batch finish execution, the POM goes back to its original state.



This shows that synchronizers are easily expressible in POM. Concrete syntax for declarative
specification can be provided via the multi-language support of Reflex. We focused here only on
the core semantics of synchronizers in POM.

6. IMPLEMENTATION

We now discuss elements of our implementation of parallel object monitors and report on perfor-
mance evaluation.

6.1. POM as a Reflex plugin

The POM implementation for Java is based on Reflex, a versatile kernel for multi-language AOP [3].
Reflex is designed to be a powerful back-end to implement both general-purpose and domain-
specific aspect languages. It is based on a reflective model that makes it possible to define customized
metaobject protocols (MOPs), with expressive selection means to precisely configure where and
when reification occurs [18].

A POM scheduler is a metaobject that takes control before and after a method is invoked.
The base class POMScheduler implements the POM MOP, which consists of the callTrap
and returnTrap methods as discussed below, and exposes the interface of the POM system to
subclasses defined by users, in particular the schedule and 1eave methods.

The POM configuration language provides concrete syntax for the declarative deployment of
off-the-shelf POM schedulers, making it possible to specify the binding between base objects and
schedulers, the methods that should be controlled, and the association strategy (per instance, per
group, etc.). The same can be done alternatively using Java 5 annotations, as illustrated in this paper.

Reflex supports multiple (domain-specific) aspect languages via a simple plugin architecture.
A major interest of Reflex for this purpose is that it automatically detects and reports on interactions
between aspects defined in different languages during weaving, and provides expressive means
for specifying aspect composition [19]. SOM [4] is also implemented as a Reflex plugin. As a
consequence, unexpected interactions between SOM and POM, such as a class that should be both
a SOM and an object controlled by a POM, can be detected and forbidden. Finally, Reflex is based
on the efficient bytecode transformation library Javassist [20] and can operate either offline, as a
compile-time utility, or online, as a Java VM agent.

6.2. Scheduler implementation

The POM Reflex plugin sets up a MOP so that the cal1lTrap and returnTrap of the appropriate
SOMScheduler metaobject are called whenever scheduled methods are entered and exited.

The callTrap method receives two parameters: the name of the invoked method and its
category. The ability of Reflex to define customized MOPs permits to determine the value of these
parameters statically at weaving time for each metaobject call location, thus limiting the overhead
of reifying request data. The callTrap method wraps the method name and category, as well
as the parent request (for reentrancy control) in a Request object. It then acquires a lock on the
scheduler object, using the ReentrantLock of Java 5, adds the request to the request queue and



calls the user-provided schedule method. Once the schedule method terminates, the lock is
released and the current thread waits for the active request to be granted permission to execute;
this can occur immediately if the recently executed schedule method already gave permission to
the request, or postponed until the schedule method running in another thread gives permission
to the request. Threads waiting for the permission to execute requests are blocked and woken up
using the low-level Java 5 LockSupport primitives.

Once the request has been executed, the returnTrap method acquires the lock to call the user-
provided leave method, and if there are pending requests in the queue, the schedule method
is run.

Note the cooperative scheduling strategy: a POM scheduler (which defines the schedule and
leave methods) is a threadless object. The job of scheduling requests is shared by client threads,
as they enter and exit their requested methods. This is why, upon exiting from a requested method,
a client thread spends some time running the 1eave method and possibly the schedule method,
during which it can enable other client threads to proceed. This is the same cooperative scheduling
strategy as that used in SOM [4], and has the benefit of avoiding attaching a thread to the scheduler
and paying for many context switches, as is the case with traditional active objects approaches.

6.3. Micro-benchmarks

‘We now report on several micro-benchmarks comparing the cost of POM and other synchronization
tools. In the two first benchmarks, we use a bounded buffer scenario with producers and consumers.
The implementation of the POM scheduler for a bounded buffer is shown in Figure 15. The scheduler
makes use of method categories, PUT and GET, which are defined when configuring POM. Also,
this scheduler uses the possibility to perform set operations on categories: the category NOTPUT
is defined as comprising any method that does not belong to the PUT category (*). Introducing
these categories makes it possible to express the scheduling in a very concise manner.

public class BufferSched extends POMScheduler {
static final Category PUT = category(), GET = category();
static final Category NOTPUT = PUT.not(); (%)
static final Category NOTGET = GET.not();
private int maxsize; // init in constructor
private int size = 0;
private boolean working = false;

public void schedule() {
if (!working) {
if (size == 0) working = executeOldest (NOTGET) ;
else if(size == maxsize) working = executeOldest (NOTPUT);
else working = executeOldest();
1}
public void leave(Request req) {
if (req.is(PUT)) size++;
else if (req.is(GET)) size--;
working = false;

1}

Figure 15. POM scheduler for a bounded buffer.
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6.3.1. Producer and consumer on four CPUs

This micro-benchmark aims at comparing the overhead of POM for synchronization. In this scenario,
there is one producer sending 100 000 integer objects to a buffer while in parallel a consumer sums
up the numbers taken from the buffer. The test machine is a 4-CPU machine (two-way Dual-Core
Xeon 2.33 GHz), running Red Hat Enterprise Linux ES release 4 and the JDK 1.6.0 virtual machine
from Sun.

Results are shown in Figure 16. The horizontal axis represents the maximal size of the buffer
and the vertical axis represents the execution times for these implementations:

e C.V. (for Condition Variables): A smart buffer using the reentrant locks and condition variables
introduced in Java 5 (from JSR 166), as described in [21].

Fair C.V.: The same buffer than C.V. but enforcing a fair allocation of locks.

Java mon: A buffer using legacy Java monitors, as advised in the Sun Java tutorial.

SOM: The buffer synchronized with SOM, as described in [4].

POM: The buffer synchronized with POM, as shown in Figure 15.

To analyze these results it is important to consider that the scenario is a worst-case scenario
for synchronization tools because the time to effectively produce and consume items is marginal
compared with the time to synchronize access to the buffer: hence in such a situation, four proces-
sors work slower than a single one; moreover, a single thread executing both producer and consumer
is a lot faster than two threads. This scenario is just targeted at measuring the overhead of synchro-
nization in the presence of high contention for the different monitors.

The C.V. and Java mon. implementations are by far the most efficient. The other implementations
are much slower because they are victims of processor oscillation phenomena caused by their



fair allocation policy. To better understand this phenomenon, consider a processor executing the
producer, owning the monitor, while another processor executes the consumer and is waiting to get
the monitor. When the first processor releases the monitor, it quickly produces another item and
asks again for the monitor, before the second processor wakes up.

With the unfair allocation policy of legacy monitors and Java 5 locks, the first processor wins the
monitor immediately and continues without pauses: it can work continuously until completely filling
the buffer. Then the second processor gets the monitor and works continuously until the buffer is
empty. Conversely, with a fair allocation policy, when the first processor asks again for the monitor, it
does not get it and has to wait until the second processor wakes up and executes its own operation. This
situation is reproduced for the production and consumption of each and every item. All this sleeping
and waking up of processors greatly degrades the performance: actually, having a buffer of more than
one slot is useless in this case. The unfair legacy monitors and Java 5 locks face only this processor
oscillation phenomenon when the buffer is of size 1, as clearly reported in Figure 16.

6.3.2.  Producer and multiple consumers on four CPUs

This benchmark aims at measuring the overhead of synchronization in situations with extremely
high contention on a monitor. One thread produces 100 000 integer objects and puts them in a buffer
of a single slot. A varying number of consumer threads compete to get items from the buffer and
sum them up. Since the time for producing an item is as short as that for consuming, consumers
are almost always waiting to get an item from the buffer. Since the buffer is of size 1, the producer
is constrained to give up the processor each time it puts an item (dually for a consumer). As a
consequence, in this setting there are thread context switches for each put and each get operation.

The results (Figure 17) show that both SOM and POM are slightly more efficient than the
Java 5 solution. Moreover, legacy Java monitors (Figure 17(b)) become severely inefficient for high
numbers of consumers (almost two orders of magnitude for one hundred consumers). This is due to
the semantics of the not ifyAl1 operation: when the producer puts an item, it calls notifyall
and awakes all waiting consumers. Consumers awake and take one by one the monitor. The first
one succeeds in getting an item, but others then find the buffer empty and hence go back to wait.
Therefore, a number of expensive and useless thread context switches occur. In all cases, the overall
time increases with the number of threads due to thread overhead. Having four CPUs is useless in
this scenario because of the high contention of the monitor.

6.3.3. Readers and writers on four CPUs

We now compare POM with other synchronization tools when parallel execution of threads is
required, with different degrees of monitor contention. For this purpose, we consider a readers
and writers problem: a dictionary that allows queries (implemented as linear search) to proceed in
parallel. We consider three implementations:

e RWLock: Using the read/write lock of Java 5 (ReadWriteReentrantLock).

e Java mon: A read and write lock implemented with legacy Java monitors.

e POM: A POM scheduler implementing readers and writers synchronization as explained in
Section 4.2.
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During the experiments, we progressively increase the size of the dictionary, so that the work
done per read request gets higher. For each dictionary size and implementation, we measure the
performance with a single thread that makes one million unsuccessful queries, and with four threads
making each 250 000 queries. In the latter case, the four CPUs of the machine are exploited, but
there should be some contention to access the monitor: indeed, even if all threads can make queries
in parallel, they still need to access the internal data of the monitors in mutual exclusion. We do not
expect any performance improvement in having four threads for small dictionaries, because of the
high monitor contention. On the other hand, for big dictionaries, we expect a speedup approaching
4 x when using four threads compared with only one. Also, overall timing should increase while
increasing the dictionary size.

Figure 18 shows the results of this experiment. For each case, we give the execution time for
one thread (Figure 18(a)) and the calculated speedup (dividing the time for one thread by the



time for four threads, Figure 18(b)). The measurements basically confirm our expectations: having
four threads for small dictionaries degrades performance. For the Java 5 locks solution, having
four threads becomes beneficial for a dictionary of size between 10 and 100, while for legacy
monitors and POM the breaking point is between 100 and 1000. For big dictionaries, the three
implementations perform similarly, because the predominant work is the linear search.

With very small dictionary sizes and only one thread, Java 5 locks perform twice as fast as legacy
monitors and four times as fast as POM. With four threads, the results are more balanced but the
order is maintained.

6.3.4. Evaluation

These benchmarks show that POMs (and SOM) are competitive with existing, low-level synchro-
nization techniques. In cases with high contention, POM is on par with Java 5 locks, and is signifi-
cantly faster than legacy Java monitors. When parallel execution is required, POM exhibits a
reasonable overhead, which we believe is acceptable when considering the gains in expressiveness,
simplicity, and modularity brought by our approach.

Indeed, the different concurrency tools coming with Java 5 are considerably more complex to
use correctly than POM. As an illustration, the implementation of the efficient synchronized buffer
with Java 5 that we used in the benchmarks is given in Figure 19. It ought to be contrasted with the
POM implementation of Figure 15: the synchronization logic is spread out in various places and is
complex due to explicit lock manipulation. Conversely, in the POM solution, the bounded buffer
is a simple, unsynchronized class (not presented here) and the synchronization logic is localized in
the scheduler and easy to understand.

Furthermore, considering a VM-based implementation (rather than bytecode transformation
based) would further reduce the overhead of POM in terms of interception and reification of method
calls, hence making the approach even more competitive while preserving the software engineering
benefits.

7. DISCUSSION
7.1. Generality vs Specificity

POM makes it possible to tune the generality of a given scheduler. A scheduler can be highly generic
and reusable (similar to the scheduler of Figure 8, which relies on method categories), or it can
be very application-specific (similar to the scheduler for philosophers in Figure 10). In addition to
allowing this fine tuning, POM allows for modular definition of synchronization. A POM scheduler
encapsulates the synchronization logic, while the POM configuration language is used to specify
the binding of a scheduler to base code.

7.2. Relation to AOP
The approach we use is indeed aspect oriented [22]: the aspect of coordination of parallel activities

is separated from the base code through a mechanism similar to other AOP approaches. In this
regard, our implementation of POM consists of a framework for defining the coordination semantics



public class CVBuffer extends Buffer {
private final ReentrantLock mutex;
private final Condition notFull, notEmpty;
private int maxsize;
private List buf = new LinkedList();

public CVBuffer(int capacity) {
maxsize = capacity;
mutex = new ReentrantLock();
notFull = mutex.newCondition();
notEmpty = mutex.newCondition();

public void put(Object x) {
try {
mutex.lock();
while (maxsize == buf.size()) { notFull.await(); }
buf.add(x);
notEmpty.signal();

catch (InterruptedException e) { ... }
finally { mutex.unlock(); } }

public Object get() {
Object x = null;
try {
mutex.lock();
while (buf.size() == 0) { notEmpty.await(); }
x = buf.remove(0);
notFull.signal();
}
catch (InterruptedException e) { ... }
finally { mutex.unlock(); }
return x;

T3}

Figure 19. Implementation of the bounded buffer synchronized with a reentrant lock
and condition objects of Java 5.

(the scheduler) as well as a small domain-specific language for the binding between base entities
and schedulers. We have also illustrated how this binding specification can be done explicitly in
source code using annotations. The success of the annotation style of Aspect] aspects shows that
although using annotations directly in the code compromises syntactic obliviousness, it can be more
convenient in cases where syntactic obliviousness is not required.

The gain with respect to directly using a general-purpose aspect language such as Aspect] is
twofold: first, the configuration language exposes only the joinpoints that do make sense in the
context of POM (method executions), at a higher-level of abstraction; second, the framework for
defining schedulers hides the low-level logic needed to actually realize synchronization appro-
priately. This said, it is feasible to devise an implementation of POM using a general-purpose
aspect language such as Aspect] [23], although some features may be more cumbersome to
provide:

e Implementing categories (Section 4.2) requires passing metadata from the pointcut to the
advice. In Aspect] it would be necessary, on each invocation, to use reflection through
thisJoinPoint to obtain the name of the invoked method, and then perform a lookup of



the corresponding category. With Reflex, the category metadata is determined at weaving time
and can therefore be passed directly to the metaobject, without using reflective features.

e Group synchronization (Section 4.3) requires associating a particular aspect instance with an
arbitrary set of objects, a feature that is not provided by Aspect]. This limitation of Aspect]
was noted by Sakurai et al. [24], who developed an extension of it, which is however not
included in the standard Aspect] distribution.

Furthermore, we have chosen to include POM in our more general research artifact for multi-
language AOP, in order to be able to study related issues such as aspect interactions across
languages [3,19].

7.3. Inheritance anomaly

The interaction between inheritance and concurrency control is well known to be difficult and raises
a number of inheritance anomalies [25,26]. According to the taxonomy given in [26], the different
occurrences of the inheritance anomaly can be categorized into three classes:

History-sensitiveness of acceptable states: Extending a class with methods that require a synchro-
nization based on past activity implies redefining all methods of the base class to manually keep
track of the bits of history that are relevant.

Fartitioning of states: Introducing a new logical state in the synchronization strategy implies
pervasive changes to the original synchronization specifications.

Modification of acceptable states: This last class of anomaly refers to the impossibility of using
mixin-like extensions dealing with synchronization out of the box: classes that are extended via a
synchronization mixin have to be manually modified.

Recently, Milicia and Sassone [27] have studied the impact of new modularization approaches
such as composition filters [28] and aspect-oriented programming [22] on the inheritance anomaly.
They showed that decoupling the synchronization concern from the business logic of a module
improves the situation, in particular with respect to the third class of anomaly. However, proper
modularization of synchronization does not by itself eliminate the inheritance anomaly [27]. In
particular, the history sensitiveness class of anomaly generally requires tedious rewriting, extension,
and book-keeping code. Jeeg [29] is an aspect language extending guards with linear temporal
logic (LTL); this way, Jeeg provides history-sensitive expressiveness that allows a straightforward
tackling of these kinds of anomalies (at least, for constraints that can be described as star-free
regular languages over the execution traces of objects). However, none of the modern languages
discussed in [27] are capable of tackling all cases of inheritance anomaly; as discussed, the very
nature of the anomaly makes it hard to make any strong claim in this regard, and most likely further
experience with OOP and concurrency will unveil new kinds of anomalies.

POM clearly falls in the category of modern approaches to concurrency that aim at decoupling
the synchronization concern from the rest of the application. This by itself helps in certain kind of
anomalies, but not all. Still, since POM chooses to reify incoming requests; the pending queue of
requests, the scheduling strategy, reentrancy, and leaving requests; all elements are at hand of the
programmer. For instance, if one wishes to tackle history sensitiveness, one can provide a base-
scheduler class that delegates to subclasses the task of returning all requests to be executed (rather
than executing them directly). This base-scheduler class then triggers execution of the requests
in that list. This indirection provides the necessary hook for a scheduler subclass to ‘remember’



the requests that were previously dispatched, and hence makes it possible to provide abstractions
inspired by LTL like in Jeeg, such as previous, since, etc. Therefore, the powerful imperative
framework of POM can serve as a base to devise different abstractions to address particular classes
of the anomaly.

7.4. Transactional memory

Lately, the research community is putting a lot of attention on software transactional memory
(STM) [30]. Adapting the well-known concept of database transactions to concurrent programming,
with STM the programmer signals the start of a transaction (instead of asking a lock), performs
some data accesses, and finally commits the operation (instead of releasing a lock). The STM
system detects any data race when threads access shared data and aborts inconsistent transactions.
The main advantage of STM is that deadlocks or priority inversion problems cannot occur. In
contrast, in lock-based systems avoiding these problems is the responsibility of programmers and
is generally difficult. Some implementations of STM also avoid livelocks but with extra overhead.

STM is more light-weight than database transactions because in the former case only memory
accesses are concerned while the latter implicates disk operations. On the other hand, for general
concurrent programming, STM is more expensive than locks in terms of processor and/or memory
usage, although STM performance is approaching the performance of lock-based systems [30] and
sometimes exceeding them [31,32]. One problem associated with the STM is that the programmer
must access data through a special STM API [30,33], hence requiring extensive changes to
software. A Java language extension has been proposed to alleviate this issue, relying on an
extended compiler [31,32], but is still intrusive.

An interesting research perspective is to combine POM and STM into a system that, like POM,
uses schedulers to specify the synchronization concern, and turns methods into transactions, as in
STM. However, the implementation of such a system will be harder than POM, because it will
require complex bytecode changes, as explained in [31,32].

7.5. Limitations

Our approach to concurrency control fosters expressiveness. This is why schedulers are defined
imperatively, in plain Java. As a consequence, this makes it very difficult, if not impossible, to
develop analysis and optimizations of the scheduling code. As mentioned before, we focused on core
semantics in this work. This, however, does not preclude the provision of a restricted expressiveness
on top of POM using a domain-specific language, which would then be amenable to analysis and
optimizations. A first direction would be to extend the POM configuration language so that the
scheduler is expressed directly in this extended language, rather than only using the language for
specifying the binding between Java schedulers and base entities.

Another limitation of our approach is that there is no parallel execution of the scheduler itself.
This means that threads may have to wait for executing the scheduling and leaving methods.
However, it has to be highlighted that threads are blocked only during the execution of scheduling
and leaving methods (not during execution of other requests) and that these methods are meant to
be short-running. For instance, in the philosophers example, the scheduling method is called only to
determine whether a philosopher can eat; while the philosopher is eating, the scheduler monitor is



not blocked; hence, other executions of the scheduling or leaving methods can proceed. Similarly,
calls to the leaving methods are used only to update the state of the scheduler. As a matter of fact,
the performance issue with POM does not come from blocking threads during the execution of the
scheduling and leaving methods, because the probability of contention there is marginal. The true
issue is the fact of having to ask a lock for this. Hence, a very promising approach would actually
be to use transactional memory for the POM schedulers, in order to avoid requesting locks for
scheduler execution.

Finally, in this work we do not analyze and address the issues raised by the interactions between
various POMs. For now, we consider that the user must take care not to introduce such interactions,
exactly as is the case with other concurrency abstractions, and leave the further study of this issue
for future work. In particular, recent work on omniscient debugging can bring new perspectives on
detecting subtle concurrency issues [34].

8. CONCLUSION AND FUTURE WORK

We have presented parallel object monitor (POM) as a new abstraction for synchronizing parallel
activities. The main contribution of POM is to combine the power of the multi-object coordination of
Frglund and Agha [1] with the expressiveness provided by an explicit access to the request queue, as
in scheduler approaches [4,14]. In addition, POM gives complete control over reentrancy strategies.
Furthermore, following an aspect-oriented approach, POM promotes separation of concerns by
untangling the synchronization concern from the application code. On the basis of the Reflex
AOQOP kernel, the Java implementation of POM supports reuse of off-the-shelf synchronization
policies, thanks to method categories. A lightweight domain-specific aspect language is provided for
configuration of existing schedulers. We have illustrated the expressiveness of POM through several
examples, in particular through the implementation of high-level abstractions such as sequential
object monitors (SOMs) [4] and chords [5], as well as the synchronizers of [1]. Finally, several
benchmarks validate the applicability of the proposal.

As future work, several trends shall be pursued. First, the aspect language for POM can be made
more expressive, in terms of both configuration control and scheduling specification. Second, the
POM chord abstraction presented here represents a powerful starting point for several alternatives
of join patterns, such as n-way rendezvous. Third, the relation with software transactional memory
(STM) should be further explored. STM has several advantages over lock-based approaches, but
is still an intrusive approach to concurrency specification. It is therefore particularly interesting to
try to reconcile the transparency and fine-grained control of our approach with the efficiency of
STM. Finally, composability of SOMs and POMs should be studied, taking advantage of the aspect
composition facilities of Reflex, including both detection and resolution of interactions [3].

Availability: POM and SOM are available at http://reflex.dcc.uchile.cl/POM under the MIT
open source license.
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