
Analyzing Singularity Channel Contracts ∗

Zachary Stengel and Tevfik Bultan
Computer Science Department

University of California
Santa Barbara, CA 93106, USA
{zss,bultan}@cs.ucsb.edu

ABSTRACT
This paper presents techniques for analyzing channel contract spec-
ifications in Microsoft Research’s Singularity operating system. A
channel contract is a state machine that specifies the allowable in-
teractions between a server and a client through an asynchronous
communication channel. We show that, contrary to what is claimed
in the Singularity documentation, processes that faithfully follow a
channel contract can deadlock. We present a realizability analy-
sis that can be used to identify channel contracts with problems.
Our realizability analysis also leads to an efficient verification ap-
proach where properties about the interaction behavior canbe ver-
ified without modeling the contents of communication channels.
We analyzed more than 90 channel contracts from the Singular-
ity code distribution and documentation. Only two contracts failed
our realizability condition and these two contracts allow deadlocks.
Our experimental results demonstrate that realizability analysis and
verification of channel contracts can be done efficiently using our
approach.

Categories and Subject Descriptors
D.2.4 [Software Engineering]: Software/Program Verification—
formal methods, model checking

General Terms
Verification

Keywords
realizability, conversations, asynchronous communication

1. INTRODUCTION
Singularity is a new, experimental, operating system developed

by Microsoft Research to explore new approaches to OS design[11].
One of its main goals is to improve the dependability of software

∗This work is supported by NSF grants CCF-0614002 and CCF-
0716095.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
WOODSTOCK’97 El Paso, Texas USA
Copyright 200X ACM X-XXXXX-XX-X/XX/XX ...$5.00.

systems by rethinking some design decisions that have largely gov-
erned operating system architecture to date. Process isolation is
a chief design principle of the Singularity operating system. To
achieve this, certain constraints are enforced to ensure process in-
dependence. Among these is the rule that processes cannot share
memory with each other or the kernel. All inter-process commu-
nication in Singularity, therefore, occurs via message passing over
bidirectional conduits, called channels.

Channels have two end points referred to as the client and the
server. The client and the server processes use the channel to com-
municate with each other by sending and receiving messages.Com-
munication through Singularity channels correspond to asynchronous
communication via FIFO queues. When a process sends a message
through a channel, the message is appended to a message queue. A
message that is at the head of a message queue is removed from the
message queue when a receive action is executed by the receiving
process at the other end of the channel.

In Singularity, each channel is governed by a channel contract [4,
15]. A channel contract is basically a state machine that speci-
fies the allowable ordering of messages between the client and the
server. Singularity processes are written in an extension of C#
called Sing#, which provides constructs for writing channel con-
tracts. The Sing# compiler statically checks that the processes that
communicate through a channel conform to the channel contract.
Singularity Design Note 5 [15] claims that client and serverpro-
cesses that are verified with respect to a channel contract are guar-
anteed not to deadlock. In this paper, we show that this is notcor-
rect. In fact, we show two Singularity channel contracts that allow
deadlocks, one from the Singularity documentation and one from
the Singularity code distribution.

The major contributions of this paper are:(1) We refine the real-
izability conditions from earlier work on multi-party conversation
protocols [5], and apply them to channel contracts in the Singular-
ity operating system. The new result we present in this paperis
that autonomous condition is a sufficient condition for the realiz-
ability of two-party deterministic conversation protocols whereas
the earlier results require two additional conditions to guarantee re-
alizability of multi-party conversation protocols. Moreover, the au-
tonomous condition is not directly applicable to channel contracts
since all channel contracts violate the autonomous condition if the
ChannelClosed messages are taken into account. In this paper,
we show that theChannelClosedmessages can be ignored during
realizability analysis due to the specific channel closing semantics
of the Singularity channels.(2) We present a tool, called Tune, for
analyzing the correctness of Singularity channel contracts. While
Singularity’s type checker provides conformance checks against
contract implementations, our tool is able to verify the correctness
of the contracts themselves, independent of any particularimple-



mentation. If potential problems are found, our tool utilizes the
Spin model checker to generate a specific counter-example. In ad-
dition, our tool generates Promela models for Singularity contracts,
which can be used in conjunction with Spin to verify application-
specific LTL properties.(3) We experimentally evaluate the effec-
tiveness of our approach by analyzing a large set of channel con-
tracts from the Singularity code base. Our results demonstrate that
our analysis techniques are efficient and are able to identify faulty
channel contracts that allow deadlocks.

In this paper, we formalize the semantics of channel contracts
and define the following realizability problem: Given a channel
contract, is it possible to find client and server implementations
that generate all the message sequences specified by the channel
contract without causing any deadlock. Moreover, we present a
sufficient condition for realizability of the channel contracts. The
realizability condition simply states that all the transitions that orig-
inate in the same state should have the same sender. I.e., a send
transition initiated by the client and a send transition initiated by
the server cannot originate from the same state. This condition is
sufficient for showing realizability; however, it is not a necessary
condition: There are realizable channel contracts that violate this
condition. Although our realizability analysis can generate false
positives, our experiments on the channel contracts provided in the
Singularity code base and documentation show that our realizabil-
ity condition is not too restrictive. We analyzed more than 90 Sin-
gularity contracts and only two of them failed our realizability con-
dition. And, the two contracts that failed our realizability condition
have deadlocks, i.e., we did not observe any false positivesin our
experiments.

We implemented our approach in a tool called Tune. Sing# chan-
nel contracts are analyzed using Tune in three phases. In Phase 1
Tune simply checks the realizability condition. If the contract fails
the realizability test, then we go to Phase 2. In Phase 2, Tunegen-
erates a Promela specification (input language of the Spin model
checker [8]), and uses the Spin model checker to look for a dead-
lock. If Spin finds a deadlock, the message exchange sequence
that leads to deadlock is reported to the user. Finally, in Phase 3
we use the Spin model checker to verify LTL properties about the
channel contracts. These LTL formulas specify properties that are
expected to hold for any possible message sequence generated by
peers that behave according to the contract specification. Due to
asynchronous communication, the state space can be unbounded
(if the channels are unbounded). Since Spin is a finite state model
checker, we have to bound the channel sizes. However, if the
given channel contract satisfies our realizability condition, then it
is not necessary to use asynchronous communication semantics: It
is guaranteed that the behaviors generated by the synchronous and
asynchronous communication semantics are equivalent as far as the
messages sequences are concerned. Hence, we can verify the syn-
chronous model and avoid the potential state space explosion due to
channel contents. Our experiments show that Singularity contracts
can be analyzed efficiently using our approach.

2. CHANNEL CONTRACTS
A Singularity channel consists of exactly two endpoints, referred

to as peers. Channel endpoints are asymmetric, with one end be-
ing designated as the exporting end and the other designatedthe
importing end. Messages sent over a channel are guaranteed to be
received in FIFO order. For every contractC, a type is defined for
interacting with each endpoint:C.Exp for the exporting endpoint,
andC.Imp for the importing endpoint. An endpoint can only be
owned by at most one thread at any time, which is responsible for
dequeuing and processing messages sent to an endpoint [11].We

StateDeclaration ::= StateId : { MessageSequence∗ }
MessageSequence::= Action Continuation
Action ::= MessageId! | MessageId?
Continuation ::= ;

| -> StateId Continuation
| -> MessageSequence
| -> Choice

Choice ::= ( MessageSequence(or MessageSequence)+ )
StateId ::= chars+
MessageId::= chars+

Figure 1: Singularity Channel Contract Specification Syntax

public contract KeyboardDeviceContract {
state Start: {

Success! -> Ready;
}
state Ready: {

GetKey? -> Waiting;
PollKey? -> (AckKey! or NakKey!) -> Ready;

}
state Waiting: {

AckKey! -> Ready;
NakKey! -> Ready;

}
}

Figure 2: An Example Channel Contract

refer to the owner of the exporting endpoint as the server andthe
owner of the importing endpoint as the client. Process communi-
cation over Singularity channels is governed by a channel contract.
A channel contract defines the following:

• The set of messages that may be transmitted over the chan-
nel.

• A finite state machine recognizing valid sequences of mes-
sages sent between two peers (client and server).

Figure 1 shows the basic syntax for contract state machine declara-
tions.

The first state declaration in a contract is considered the initial
state. Each state is defined by a series of message sequences.A
message sequence begins with an action, which can be either send-
ing a message from the server to the client or sending a message
from the client to the server. Contracts are written from theper-
spective of the server; thus a message sent by the server is indi-
cated by a! following the message name, and a message sent by
the client is indicated by a? following the message name.

An action is followed by a continuation, which can be one of
the following: 1) Empty, ending the message sequence; 2) A state
followed by another continuation; 3) A message sequence; or4) A
choice among two or more message sequences. Continuations be-
ginning with either a message sequence or a choice are effectively
short-hand to avoid declaring an explicit state; in these cases, an
implicit state is created as part of the contract protocol.

Either peer may at any time send a specialChannelClosedmes-
sage, after which point, that peer can no longer send messages.
However, the other peer may continue to send or receive messages
according to the contract. Once both peers have sent the
ChannelClosed message, the channel is fully closed, and this is
the implicit final state of the channel contract. Also a statewhich
defines no message sequences is considered an explicit final state.
When a channel is in an explicit final state the only message which
may be sent is theChannelClosed message.



ReadyWaiting Ready$0

S→→→→C:AckKey

S→→→→C:NakKey

C→→→→S:GetKey C→→→→S:PollKey

Start

S→→→→C:Success
S→→→→C:AckKey

S→→→→C:NakKey

Figure 3: KeyboardDeviceContract State Machine

Figure 2 shows a simplified version of a contract governing a
channel used by Singularity for interacting with a keyboardde-
vice. A full contract would also include explicit message decla-
rations; however they are omitted here for simplicity. Thiscon-
tract defines three explicit states:Start, Ready, andWaiting,
and also contains an implicit state as the target of thePollKey?
action. Figure 3 shows the state machine that corresponds tothe
KeyboardDeviceContract channel contract. The implicit state
is indicated by a dashed border. Also, in the Figure 3, we showthe
sender and the receiver of each message explicitly:C → Sdenotes
a message sent by the client to the server, andS → C denotes a
message sent by the server to the client.

This contract begins in theStart state and transitions intoReady
state when the server sends aSuccessmessage. Once in theReady
state, the client may send either theGetKeymessage or thePollKey
message. If theGetKey message is sent, the channel contract tran-
sitions to theWaiting state. If thePollKey message is sent,
the contract transitions to an implicit state, namedReady$0 in
Figure 3. From either of these states, the server may send either
theAckKey or NakKey message, which will transition the contract
back to theReady state. Note that the actions that correspond to
sending of theChannelClosed message and the implicit states
created due to these actions are not shown in Figure 3.

Channel Closing: In Figure 4, we show the hierarchical state ma-
chine that corresponds toKeyboardDeviceContractwith the im-
plicit states for channel closing included. StatesStart, Ready,
Ready$0, andWaiting are denoted as S, R, R0, and W in Fig-
ure 4. The hierarchical state machine shown in Figure 4 consists
of 3 super-states (O,O), (C,O), (O,C), and one final state (C,C).
State (C,C) indicates that both the client and server have closed the
channel, whereas state (O,O) indicates that neither of themclosed
the channel yet. Similarly, state (C,O) indicates that onlythe client
has closed the channel whereas state (O,C) indicates that only the
server has closed the channel.

The four transitions among the three super-states and the state
(C,C) correspond to multiple individual transitions amongthe sub-
states. While in a substate of the super-state (O,O), if the client
sends theChannelClosed message, then the state machine tran-
sitions to the corresponding sub-state of the super-state (C,O). For
example, from the state R(O,O), when the client sends the
ChannelClosed message, the state machine goes to the state
R(C,O). Similarly, while in a substate of the super-state (O,O), if
the server sends theChannelClosed message, then the state ma-
chine transitions to the corresponding sub-state of the super-state
(O,C). Note that, this is not the standard semantics for the transi-
tions in hierarchical state machine languages such as Statecharts,
but it is what we need to model the channel closing semantics.

Neither peer is allowed to send any other message after sending

R(O,O)W(O,O) R0(O,O)

S(O,O)

R(O,C)W(O,C) R0(O,C)

S(O,C)

R(C,O)W(C,O) R0(C,O)

S(C,O)

S→→→→C: Success

(C,C)

S→→→→C:ChannelClosed

(O,O)

(O,C)(C,O)

S→→→→C:NakKey

C→→→→S:GetKey

S→→→→C:AckKey S→→→→C:AckKey

C→→→→S:PollKey

S→→→→C:Success

S→→→→C:NakKey

C→→→→S:ChannelClosed

S→→→→C:ChannelClosed C→→→→S:ChannelClosed

C→→→→S:GetKey

C→→→→S:PollKey

S→→→→C:AckKey S→→→→C:AckKey

S→→→→C:NakKey S→→→→C:NakKey

Figure 4: KeyboardDeviceContract with the Implicit Statesfor
Channel Closing shown as a Hierarchical State Machine

Start

Decide

C→→→→S:Request

Sink Decide$0

End

Success

S→→→→C:Succeed C→→→→S:Cancel

S→→→→C:Failed

C→→→→S:Cancel
C→→→→S:Confirm, C→→→→S:Cancel

S→→→→C:Cancelled

Figure 5: ReservationSession State Machine

theChannelClosed message. So, in the sub-states of the super-
state (C,O), there are no transitions where client is the sender, and
in the sub-states of the super-state (O,C) there are no transitions
where the server is the sender. However, after one peer closes the
channel, the other peer can still send messages until it alsocloses
the channel. When both peers close the channel we reach the final
state (C,C).

2.1 Contracts with Problems
In the Singularity Design Note 5 [15], it is stated that

"clients and servers that have been verified separately
against the same contract C are guaranteed not to dead-
lock when allowed to communicate according to C."

The channel contract analysis we present in this paper uncovered
two contracts which show this statement to be false. We discuss
these two contracts below.

ReservationSession Contract:The first Singularity contract we
discovered demonstrating the potential for deadlock is called the



Table 1: ReservationSession Deadlock Scenario
Server Action Time Step Client Action

T0 Send:Request
Recv:Request T1
Send:Succeeded T2

T3 Send:Cancel
Recv:Cancel T4

ReadyState$0

ReadyState$1

IO_RUNNING

C→→→→S:GetTpmStatus

ReadyState

S→→→→C:SendComplete

IO_RUNNING$0

C→→→→S:GetTpmStatus

S→→→→C:AckStartSendC→→→→S:Send

S→→→→C:TpmStatusS→→→→C:TpmStatus

Figure 6: TpmContract State Machine

ReservationSession contract. It is an example contract given
in the Singularity RDK documentation [15]. It defines the state
machine shown in Figure 5. Table 1 shows an interleaving of valid
client and server actions according to this contract that leads to a
deadlock.

After step T4, the server is in the terminalEnd state. The client,
however, is in theDecide$0 state waiting for the server to send the
Cancelled message. Neither peer can therefore make progress,
and the channel is deadlocked.

Although this contract is given in the Singularity documentation,
it is not included as code in the Singularity distribution. We created
a user application containing this contract and added it to the distri-
bution. The contract compiled and passed Singularity’s static ver-
ification checks. Our application was allowed to run and we were
able to witness the deadlock scenario, demonstrating that Singular-
ity processes can deadlock even when they are faithfully following
a channel contract.

TpmContract: The second contract we discovered violating the
claim that Singularity contracts are deadlock-free, is the
TpmContract. This contract is included in version 2.0 of the Sin-
gularity RDK and is used by a component of the Singularity kernel.
Our analysis shows that it is possible for a client and serverthat
obey this contract to deadlock. The state machine for this contract
is shown in Figure 6.

Table 2 shows an interleaving of valid client and server actions
that can lead to deadlock in this contract. After step T1, once the
Send message is sent by the client and received by the server, both

Table 2: TpmContract Deadlock Scenario
Server Action Time Step Client Action

T0 Send:Send
Recv:Send T1
Send:AckStartSend T2

T3 Recv:ACkStartSend
Send:SendComplete T4

T5 Send:GetTpmStatus
Recv:GetTpmStatus T6
Send:TpmStatus T7

ReadyWaiting Ready$0

Start

NakKey!

GetKey?

AckKey! AckKey!

PollKey?

Success!

NakKey!

ReadyWaiting Ready$0

Start

NakKey?

GetKey!

AckKey? AckKey?

PollKey!

Success?

NakKey?


Client Server

Figure 7: Projection of the KeyboardDeviceContract to the
Client and the Server

peers are in theReadState$0 state. After step T3, both peers are
in the IO_RUNNING state. After step T4, the server transitions to
the ReadyState state. However, after step T5, the client tran-
sitions to theIO_RUNNING$0 state. Deadlock is now inevitable.
At step T6, the server receives theGetTpmStatus message and
responds, at step T7, by sending theTpmStatus message. The
server is in theReadyState state waiting for the client to send
theSend or GetTpmStatus messages; however, the client cannot
make progress because theSendComplete message is at the head
of its receive queue, for which there is no valid transition.The
channel is therefore deadlocked. Note that, although the problems
with both of these contracts involve transitions to implicit states,
there is no difference between implicit and explicit stateswith re-
spect to this type of problems. The equivalent contracts with only
explicit states will exhibit the same problems.

Here is an interesting distinction between the channel contract
shown in Figure 3 and the channel contracts shown in Figures 5,
and 6: If a client and a server implement the contract in 3 by sim-
ply using the projections of the contract machine (where a send
action for the server becomes a receive action for the clientand
visa versa), then the resulting system will follow the contract and
will not deadlock. In Figure 7, we visually show the projection of
theKeyboardDeviceContract to the client and the server. How-
ever, if we do the same for theReservationSession contract
shown in Figure 5 and theTpmContract contract shown in Fig-
ure 6, the resulting system can deadlock. Below, we formalize
this difference as the realizability problem for channel contracts:
KeyboardDeviceContract is realizable whereas
ReservationSession andTpmContract are not. Moreover, we
give a sufficient condition for the realizability of channelcontracts.

3. A FORMAL MODEL
A channel contract automatonis a tupleA = (M, S, I, F, δ)

whereM is the finite set of messages (the alphabet),S is the finite
set of states,I ∈ S is the initial state,F ⊆ T is the set of final
states, andδ ⊆ S × M × S is a deterministic transition relation,
i.e.,(s, m, s′) ∈ δ and(s, m, s′′) ∈ δ implies thats′ = s′′. (Since
Singularity does not allow multiple transitions from the same con-
tract state with the same message label, the transition relations of
the channel contract automata are deterministic.)

A channel contract automaton recognizes sequences of messages,
i.e., members of the setM∗. We call each such message sequence
a conversation. The language accepted by a channel contract au-
tomatonA is denoted byL(A) ⊆ M∗, and it specifies the set
of allowable conversations (i.e., the set of allowable message se-
quences) between a client and a server according to the channel
contract.

The set of messages is partitioned to two sets,M = Mc ∪ Ms,
whereMc is the set of messages that the client can send to the
server andMs is the set of messages that the server can send to



the client. In order to simplify our technical model we assume that
Mc ∩ Ms = ∅. This does not reduce the generality of our model.
If there are messages that both peers can send (for example, the
ChannelClosedmessage), we add the sender’s initial to such mes-
sages to identify the sending peer (for exampleCChannelClosed
if the client is the sender andSChannelClosed if the server is the
sender).

Given a channel contract and the corresponding channel contract
automaton, a server and a client conform to the contract if the se-
quence of messages sent by the server and the client (recorded in
the order they are sent) is a conversation that is accepted bythe
channel contract automaton. We also require that 1) the peers do
not deadlock and 2) all the messages that are sent are eventually
consumed. We say that a server and a client realize a channel con-
tract if they conform to that contract and, additionally, they can
generate every conversation that is specified by the contract. We
will formalize these definitions below, after discussing the seman-
tics of channel closing.

Channel Closing Semantics:Given a channel contract automaton
A = (M, S, I, F, δ), we model the channel closing semantics by
partitioning the set of states to four sets:S = So,o ∪ So,c ∪ Sc,o ∪
Sc,c, where|So,o| = |Sc,o| = |So,c| and|Sc,c| = 1. States in the
setSo,o correspond to states before anyChannelClosedmessages
have been sent. States in the setSc,o correspond to states where the
client has sent aChannelClosed message but the server has not.
States in the setSo,c correspond to states where the server has sent
a ChannelClosed message but the client has not. Finally,Sc,c

contains a single state which corresponds to the state whereboth
the client and the server have sent theChannelClosed message,
therefore, the channel is closed, denoting the end of the conversa-
tion. We define the final state as the state after both peers have sent
theChannelClosed message, hence,F = Sc,c.

Given a channel contract automatonA = (M, S, I, F, δ) and
S = So,o ∪ Sc,o ∪ So,c ∪ Sc,c, there exist two functionsfc,o :
So,o → Sc,o, andfo,c : So,o → So,c such that,

• fc,o andfo,c are bijections.

• For eachs ∈ So,o, (s, CChannelClosed, fc,o(s)) ∈ δ.

• For eachs ∈ So,o, (s, SChannelClosed, fo,c(s)) ∈ δ

• For anys, s′ ∈ So,o, (fc,o(s),m, fc,o(s
′)) ∈ δ if and only

if (s, m, s′) ∈ δ andm ∈ Ms.

• For anys, s′ ∈ So,o, (fo,c(s),m, fo,c(s
′)) ∈ δ if and only

if (s, m, s′) ∈ δ andm ∈ Mc.

Finally, we have the following three conditions:

• For eachs ∈ Sc,o, (s, SChannelClosed, s′) ∈ δ where
s′ ∈ Sc,c = F .

• For eachs ∈ So,c, (s, CChannelClosed, s′) ∈ δ where
s′ ∈ Sc,c = F .

• There are no transitions that originate inSc,c, i.e., after both
peers close the channel no more messages can be sent.

3.1 Execution Model
In order to formally define the conformance and realizability for

channel contracts, we have to define an execution model that char-
acterizes the behaviors of the client and the server processes and
formally defines the semantics of asynchronous communication via
unbounded communication channels.

An asynchronous channel systemPc ‖ Ps consists of two state
machines: the client state machinePc = (M, Sc, Ic, Fc, δc) and
the server state machinePs = (M, Ss, Is, Fs, δs) whereM is the
finite set of messages,Sc andSs are the finite sets of states,Ic ∈ Sc

andIs ∈ Ss are the initial states,Fc ⊆ Sc andFs ⊆ Ss are the sets
of final states,δc ⊆ Sc × M × Sc andδs ⊆ Ss × M × Ss are the
transition relations for the client and server machines, respectively,
andδc andδs are both deterministic transition relations.

A configurationof a client-server system is a tuple of the form
(Qc, sc, Qs, ss) wheresc ∈ Sc denotes the state andQc ∈ M∗

s

denotes the contents of the incoming message queue of the client,
ss ∈ Ss denotes the state andQs ∈ M∗

c denotes the contents of
the incoming message queue of the server.

For two configurations σ = (Qc, sc, Qs, ss) and
σ′ = (Q′

c, s
′

c, Q
′

s, s
′

s), we say thatσ derivesσ′, written asσ → σ′,
if one of the following conditions hold:

• Client sends a message (denoted asσ
C!m
→ σ′) wherem ∈

Mc, (sc, m, s′c) ∈ δc, Q′

s = Qsm, Q′

c = Qc, ands′s = ss.

• Server sends a message (denoted asσ
S!m
→ σ′) wherem ∈

Ms, (ss, m, s′s) ∈ δs, Q′

c = Qcm, Q′

s = Qs, ands′c = sc.

• Client receives a message (denoted asσ
C?m
→ σ′) wherem ∈

Ms, (sc, m, s′c) ∈ δc, Qc = mQ′

c, Q′

s = Qs, ands′s = ss.

• Server receives a message (denoted asσ
S?m
→ σ′) wherem ∈

Mc, (ss, m, s′s) ∈ δs, Qs = mQ′

s, Q′

c = Qc, ands′c = sc.

We use→∗ to denote the reflexive transitive closure of the deriva-
tion relation, and we say thatσ′ is reachable fromσ if σ →∗ σ′.

A run of a channel system is a sequence of configurationsγ =
σ0σ1 . . . σk, such that,

1. σ0 = (ǫ, Ic, ǫ, Is),

2. σj → σj+1 for 0 ≤ j < k, and

3. σk = (ǫ, sc, ǫ, ss), sc ∈ Fc andss ∈ Fs.

If γ does not satisfy the third condition we call it a partial run.
We say that a channel systemPc ‖ Ps is well-behavedif

(ǫ, Ic, ǫ, Is) →
∗ σ impliesσ →∗ (ǫ, sc, ǫ, ss), wheresc ∈ Fc and

ss ∈ Fs. I.e., a channel system is well-behaved if every config-
uration reachable from the initial configuration can reach the final
configuration.

Given a runγ, the conversation generated byγ, denoted as
conv(γ), is defined recursively as follows [7]:

• If |γ| ≤ 1, thenconv(γ) is the empty sequence.

• If γ = γ′σσ′, then

– conv(γ) = conv(γ′σ)m if σ
C!m
→ σ′ or σ

S!m
→ σ′

– conv(γ) = conv(γ′σ) otherwise.

A message sequencew ∈ M∗ is aconversationgenerated by a
channel systemPc ‖ Ps if there exists a complete runγ of Pc ‖ Ps

such thatw = conv(γ). We denote the set of all conversations
generated by a channel systemPc ‖ Ps asconv(Ps ‖ Ps). Given
a channel contract automatonA and a channel systemPc ‖ Ps:

• Pc ‖ Ps conforms toA if Pc ‖ Ps is well-behaved and
conv(Ps ‖ Ps) ⊆ L(A),

• Pc ‖ Ps realizes A if Pc ‖ Ps is well-behaved and
conv(Ps ‖ Ps) = L(A).



Given a contract automatonA, it is easy to generate a channel
system that conforms toA. All the client and server have to do
is to send theChannelClosed messages to each other (and re-
ceive them). Since this simple conversation is part of any channel
contract, the resulting channel system will conform to any channel
contract. However, it is not easy to determine if there exists a chan-
nel system that realizes a contract automaton. In fact, thisis the
problem with the two example contracts (ReservationSession
andTpmContract) we discussed earlier. Any channel system that
tries to realize these two contracts can potentially deadlock, i.e.,
these channel contracts are not realizable. Next, we present a sim-
ple condition that guarantees realizability of channel contracts.

4. REALIZABILITY ANALYSIS
The realizability condition we propose is the following: Ifwe ig-

nore theChannelClosed messages, then there should not be two
transitions from the same state of the contract automaton such that
the client is the sender on one of them and the server is the sender
on the other one. Either the client should be the sender on alltran-
sitions from a given state or the server should be the sender.This
condition is called the “autonomous” condition [5, 7]. Formally, a
contract automatonA = (M, S, I, F, δ) is calledautonomousif it
satisfies the following condition

• for all s ∈ So,o, if there exists a transition(s, m, s′) ∈ δ
where m ∈ Mc\{CChannelClosed}, then for all
(s, m′, s′′) ∈ δ, m′ ∈ Mc ∪ {SChannelClosed}, and

• for all s ∈ So,o, if there exists a transition(s, m, s′) ∈ δ

where m ∈ Ms\{SChannelClosed}, then for all
(s, m′, s′′) ∈ δ, m′ ∈ Ms ∪ {CChannelClosed}.

Note that this condition can be checked in linear time in the number
of transitions by simply traversing the transitions of the contract
machine.

We will show that if a contract automaton is autonomous, then
it is realizable. In fact, the contract automaton is realizable by its
projection to the client and the server. During projection,a transi-
tion in the contract automaton that is labeled with a messagethat
the server sends becomes a send transition for the server anda re-
ceive transition for the client. A transition labeled with amessage
that the client sends becomes a receive transition for the server and
a send transition for the client. Figure 7 shows the projection of
theKeyboardDeviceConstract in Figure 3 to the client and the
server.

Formally, given a contract automatonA = (M, S, I, F, δ), let
πc(A) denote its projection to the client andπs(A) denote its pro-
jection to the server:πc(A) = (M, Sc, Ic, Fc, δc) whereSc = S,
Ic = I , Fc = F , andδc = δ, andπs(A) = (M, Ss, Is, Fs, δs)
whereSs = S, Is = I , Fs = F , andδs = δ (i.e., the client and
server machines are identical with the contract automaton,the only
difference is the interpretation of the transitions). Hereis our main
realizability result:

THEOREM 1. Given a contract automatonA, if A is
autonomous, thenπc(A) ‖ πs(A) realizesA.

1) πc(A) ‖ πs(A) is well-behaved: Given an autonomous con-
tract automatonA = (M, S, I, F, δ), and the channel system
πc(A) ‖ πs(A), for every configurationσ = (Qc, sc, Qs, ss)
wheresc ∈ So,o andss ∈ So,o andσ is reachable from the initial
configuration(ǫ, I, ǫ, I), the following holds: EitherQc = ǫ and
the configurationσ′ = (ǫ, sc, ǫ, sc) is reachable fromσ by only
executing receive transitions by the server, orQs = ǫ and the con-
figurationσ′ = (ǫ, ss, ǫ, ss) is reachable fromσ by only executing

receive transitions by the client. This can be proved by induction
on the length of the runγ that reachesσ. Due to autonomous con-
dition, either all the transitions from the initial state are send tran-
sitions by the server or they are all send transitions by the client.
Without loss of generality, assume that it is the server who sends
the first message. Then, the only transition that the client can take
is to receive that message. If the server has another send transi-
tion from its new state, then it can send another message before
client receives the first message. However, the client will not be
able to send a message before it receives all the messages sent by
the server. Moreover, the client can only reach a state whereit has
a send transition after receiving all the messages sent by the server
(since the client and the server have identical deterministic state
machines). At that point the server must be waiting at the same
state since all the transitions from that state are receive transitions
for the server and it has to wait for the client to send a message be-
fore it can proceed. The autonomous condition basically guarantees
that the client and the server run in a token-passing style where they
alternate between message sending and message receiving phases.
Before each send action, each process receives all the messages in
its incoming message queue, i.e., the incoming message queue of
a process that is sending a message is always empty. When both
queues are empty, both processes are in the same contract state.

In the above discussion we only considered the states before
any ChannelClosed message has been sent. Assume that client
sends the firstChannelClosed message. If the client sends the
ChannelClosed message when its channel queue is empty, then
based on the above property, the server can execute a series of re-
ceive transitions that terminates by receiving theChannelClosed
message. After that, the server is the only peer that can sendmes-
sages, and the client can only receive the messages sent by the
server. The server at any moment can send theChannelClosed
message and when the client receives that message, both peers will
be in the final state and the message queues will be empty.

If the client sends theChannelClosed message when its chan-
nel queue is not empty, then based on the above property, the client
can continue to execute a series of receive transitions. When the
server receives theChannelClosedmessage sent by the client and
when the client receives all the messages in its incoming message
queue, both peers will be in the same state. They can both reach
the final state when the server sends theChannelClosed message
and the client receives it. Symmetric arguments hold for thecases
when the server sends the firstChannelClosed message.

2) conv(πc(A) ‖ πs(A)) = L(A): It is relatively easy to show
thatL(A) ⊆ conv(πc(A) ‖ πs(A)). For any conversation recog-
nized byA, we can simulate the execution ofA by πc(A) ‖ πs(A)
by executing each receive action immediately after the correspond-
ing send action. I.e., at any configuration there is at most one
queue that is not empty and it holds at most one message. We
call such a run an immediately receiving run. In order to showthat
conv(πc(A) ‖ πs(A)) ⊆ L(A), we argue that, ifA is autonomous,
then for any runγ of πc(A) ‖ πs(A), there exists another runγ′

of πc(A) ‖ πs(A) such thatγ′ is an immediately receiving run
andconv(γ′) = conv(γ). Since the execution ofπc(A) ‖ πs(A)
goes through phases where in each phase only one peer is sending
messages, we can rearrange the receive actions in each such phase
by moving each receive action right after the correspondingsend.
This will convert the original run to an immediately receiving run
without changing the conversation.

Note that an immediately receiving run is equivalent to executing
the client and the server with the synchronous communication se-
mantics where the send and the receive actions occur together and
the message queues are not used. The set of conversations gener-



Contract Parser Contract Model

Async
Promela

Async
Promela

SpinSpin

Sync
Promela

Sync
Promela

Channel 
Contract

Channel 
Contract

Data
Collector

ReportReport

Consumed by

Produces

File

Tune 
Component

External 
Tool

Contract 
AnalyzerRealizable?

Synchronous 
Model Generator 

Asynchronous 
Model Generator 

Yes

No

Figure 8: Tune Architecture

ated by the synchronous composition of the client and the server
is equal to the conversations generated by the runs with immediate
receives. Finally, note that, the synchronous compositionof πc(A)
andπs(A) is identical toA itself (synchronous composition simply
combines the send and receive transitions in the peer machines that
correspond to the projection of the same transition inA). Hence,
we conclude thatconv(πc(A) ‖ πs(A)) ⊆ L(A).

LTL Model Checking: In addition to checking the realizability of
a channel contract, we may also want to check properties about the
message sequences allowed by the channel contract. We use LTL
formulas to specify properties about the conversation set of a client-
server channel system or a channel contract. During LTL verifica-
tion we only investigate the behaviors before anyChannelClosed
message is sent, i.e., we only model the states inSo,o. We use
the results of the realizability analysis to improve the efficiency
of LTL verification. Since realizability of a channel contract im-
plies thatconv(πc(A) ‖ πs(A)) = L(A), we useA instead of
πc(A) ‖ πs(A) during verification of LTL properties about mes-
sage sequences.

5. TUNE: A TOOL FOR ANALYZING
SING# CHANNEL CONTRACTS

We developed a tool called Tune for analyzing Singularity chan-
nel contracts written in Sing#. In addition to checking realizability
of channel contracts, Tune produces representations of thecontract
in Promela (input language of the Spin model checker [8]) in order
to detect deadlock traces and for LTL verification.

Figure 8 shows Tune’s core architecture. Tune’s Contract Parser
recognizes a valid Sing# contract based on the specificationdefined
in the Singularity Design Note 5 [15], with the following limita-
tions:

typedef Endpoint
{

chan Send = [ChannelSize] of { mtype };
chan Recv = [ChannelSize] of { mtype };

}
typedef Channel
{

Endpoint Imp;
Endpoint Exp;

}

Figure 9: Endpoint and Channel declarations in Promela

1. Tune requires all messages specify explicit directionalqual-
ifiers. Messages must be sent either from server to client, or
from client to server.

2. Tune does not support subroutine states.

3. Tune does not process message parameters.

4. Tune does not support bound variables.

In Sing# contract specifications message parameters do not in-
fluence the contract behavior, so we are able to ignore them during
our analysis. The other three limitations (1, 2 and 4) do not change
the expressiveness of the contract language, i.e., any contract using
these features can be converted to an equivalent contract without
them. In practice, we have found these limitations do not signifi-
cantly impact our ability to analyze contracts implementedin the
Singularity code base. 93 out of the 94 contracts included inver-
sion 1.1 of the RDK, and 93 of the 95 contracts in version 2.0 are
fully recognized and supported by Tune.

Given a contract, the Contract Parser produces a state machine
model representing the contract. This model is then submitted to
the contract analyzer which checks the realizability condition we
presented earlier. Depending on the results of this determination,
the contract model is submitted to one of two model generators,
which create Promela models representing the contract for LTL
verification and deadlock trace generation using the Spin model
checker. The results produced by Spin are then collected by the
Data Collector, parsed, and used to produce a report containing a
pass/fail result of verification along with analysis statistics and an
error trace if the verification fails.

Asynchronous Promela Model: The Asynchronous Model Gen-
erator is responsible for creating a Promela model of a channel con-
tract that allows for messages to be sent asynchronously viaFIFO
message queues between client and server processes. This enables
the exhaustive exploration of all possible message sequences gen-
erated using a given message queue size. Like Singularity, Promela
has a built-in channel construct for passing messages between in-
dependent and concurrently running processes. However, there are
significant differences between channels in Singularity and chan-
nels in Promela which require special consideration when model-
ing Singularity channels in Promela. These differences aredue pri-
marily to the fact that Promela does not have a concept of a channel
endpoint. In Promela, messages sent on a channel are received non-
deterministically by one of any number of listeners on the channel
for that message. However in Singularity, a channel has at most two
processes (client and server) that are communicating on it.Singu-
larity endpoints also introduce directionality constraints on mes-
sages whereas, in Promela, messages can always be sent in any
direction.

Promela’stypedef keyword enables the basic structural mod-
eling of Singularity endpoints and channels. To begin the model,



proctype Server( Endpoint exp ) {
m_serverIsRunning = true;
/* Wait for the client to be ready to receive */
m_clientIsRunning -> goto START;

START:
exp.Send!OMSG_Success -> goto READY;

READY:
/* Non-deterministically choose message sequence */
if
:: exp.Recv?[IMSG_GetKey] -> exp.Recv?IMSG_GetKey;

goto WAITING;
:: exp.Recv?[IMSG_PollKey] -> exp.Recv?IMSG_PollKey;

/* Implicit Ready$0 state */
if
:: exp.Send!OMSG_AckKey -> goto READY;
:: exp.Send!OMSG_NakKey -> goto READY;
fi;
goto READY;

fi;
WAITING:

if
:: exp.Send!OMSG_AckKey -> goto READY;
:: exp.Send!OMSG_NakKey -> goto READY;
fi;

}

Figure 10: KeyboardDeviceContract Server proctype

anEndpoint typedef is declared containing two Promela chan-
nels, one for sending and one for receiving. AChannel typedef
is also declared, consisting of twoEndpoint declarations, one
calledexp (for the server), and the other calledimp (for the client).
Figure 9 shows thetypedef declarations representing a Singular-
ity endpoint and channel respectively. Promela channels must be
bounded, therefore a configurableChannelSize variable is used to
bound the size of theSend andRecv endpoint channels. Contract
messages and states are declared as enumerations using Promela’s
mtype construct. The prefixesOMSG_ and IMSG_ denote mes-
sages sent by the server and the client, respectively, and the prefix
STATE_ is used to identify the states.

Channel contract verification is accomplished using two processes,
declared using Promela’sproctype construct, one representing
the server and one representing the client. The client and server
processes are projections of the contract state machine. Since the
contract is written from the perspective of the server, the server pro-
cess directly follows the contract state machine, while forthe client
process message directions are reversed (i.e., sends become re-
ceives and receives become sends). In each state, each process non-
deterministically chooses one of the enabled send or receive ac-
tions. Implicit states are not explicitly represented in the client and
server processes, but are instead represented as nestedif blocks
within their preceding explicit state. Figures 10 and 11 show the
Promela models representing the server and client processes for the
KeyboardDeviceContract described in Section 2.

In addition to the server and client processes, a third process is
also declared, which represents the Singularity channel itself. This
process is responsible primarily for contract monitoring.It polls the
Send channel of both the client and serverEndpoint structures.
Once a message becomes available, it is atomically retrieved from
the Send channel queue, validated against the contract specifica-
tion, and redelivered on theRecv channel of the peer’sEndpoint.
The atomicity of these steps guarantee the in-order delivery of mes-
sages from one process to the other. To allow for granular contract
monitoring, implicit states are represented explicitly inthe contract
process.

Using these three processes, Spin will exhaustively explore all
possible interleavings of send and receive actions. Verification is
accomplished by defining LTL properties representing correctness

proctype Client( Endpoint imp ) {
m_clientIsRunning = true;
goto START;

START:
imp.Recv?OMSG_Success -> goto READY;

READY:
/* Non-deterministically choose message sequence */
if
:: imp.Send!IMSG_GetKey -> goto WAITING;
:: imp.Send!IMSG_PollKey ->

/* Implicit Ready$0 state */
if
:: imp.Recv?[OMSG_AckKey] -> imp.Recv?OMSG_AckKey;

goto READY;
:: imp.Recv?[OMSG_NakKey] -> imp.Recv?OMSG_NakKey;

goto READY;
fi;
goto READY;

fi;
WAITING:

/* Non-deterministically choose message sequence */
if
:: imp.Recv?[OMSG_AckKey] -> imp.Recv?OMSG_AckKey;

goto READY;
:: imp.Recv?[OMSG_NakKey] -> imp.Recv?OMSG_NakKey;

goto READY;
fi;

}

Figure 11: KeyboardDeviceContract Client proctype

criteria, which should never be violated by a valid contract. By
default, Tune defines the following LTL formula for all contracts:
G(!timeout) wheretimeout is a built-in Spin variable that is
false unless no process can make progress. This property, therefore,
enables us to test for deadlocks.

Synchronous Promela Model:The exhaustive explicit state verifi-
cation performed against asynchronous contract models is,in gen-
eral, unsound due to the fact that analysis can cause exponential
state space explosion, and Promela channel queues must havea
fixed bound. A sound and more efficient alternative is to first per-
form realizability analysis against the contract. If a contract is de-
termined to be realizable, then it is guaranteed to be deadlock-free
and can be verified using an equivalent synchronous model. Tune
performs realizability analysis against the contract model produced
by the parser, and if the contract is determined to be realizable,
the Synchronous Model Generator is used to create a synchronous
Promela model representing the contract. Figure 12 shows the en-
tire synchronous model for theKeyboardDeviceContract.

6. EXPERIMENTS
We developed a three phase approach for the verification of Sin-

gularity channel contracts. The first two phases together detect
potential deadlocks in the channel contracts, and the thirdphase
checks contract specific LTL properties to verify correctness.

Phase 1: Realizability Analysis:In the first phase we perform re-
alizability analysis against the contract. If the contractis realizable,
then it is guaranteed to be deadlock-free. Our realizability analysis
is sound, however, it is conservative and may produce false posi-
tives. For example, Figure 13 shows a version of theTpmContract

state machine described in section 3.2, which has been fixed to no
longer contain a deadlock. TheIO_RUNNING$1 state and dashed
transitions have been added.

The fixed TpmContract will not deadlock, however, the
IO_RUNNING state still violates the autonomous property, and thus
will fail our realizability check. Hence, if a contract fails realiz-
ability analysis, it may or may not contain a deadlock, and this



mtype = {Ready, Ready__1, Start, Waiting};
mtype = {m_GetKey, m_PollKey, m_AckKey, m_NakKey, m_Success};
mtype state;
mtype msg;
active proctype GuardedProtocol(){

state = Start;
msg= m_undefined;
do
:: if

:: state==Ready ->
d_step{ msg=m_GetKey; state=Waiting };

:: state==Ready ->
d_step{ msg=m_PollKey; state=Ready__1};

:: state==Ready__1 ->
d_step{ msg=m_AckKey; state=Ready};

:: state==Ready__1 ->
d_step{ msg=m_NakKey; state=Ready};

:: state==Start ->
d_step{ msg=m_Success; state=Ready};

:: state==Waiting ->
d_step{ msg=m_AckKey; state=Ready};

:: state==Waiting ->
d_step{ msg=m_NakKey; state=Ready};

fi;
od;

}

Figure 12: Synchronous KeyboardDeviceContract Promela
Model

ReadyState$0

ReadyState$1

IO_RUNNING

C→→→→S:GetTpmStatus

ReadyState

S→→→→C: SendComplete

IO_RUNNING$0

C→→→→S:GetTpmStatus

S→→→→C:AckStartSendC→→→→S:Send

S→→→→C:TpmStatusS→→→→C:TpmStatus

IO_RUNNING$1

S→→→→C:TpmStatus S→→→→C:SendComplete

Figure 13: Fixed TpmContract State Machine

motivates the second phase of our analysis.

Phase 2: Deadlock Trace Generation:In phase two of our anal-
ysis, we run Spin against the full asynchronous Promela model to
exhaustively search for deadlock conditions. This phase isrequired
only for contracts that fail the realizability analysis in phase 1. The
analysis in phase 2 produces no false positives—if it finds a dead-
lock, a counter-example trace is generated showing a precise mes-
sage sequence that causes deadlock. Since channel sizes in Spin are
bounded, this analysis is unsound in general, i.e., if we do not find
a deadlock trace a deadlock may still exist for a system with larger
message queues. Also, for bounded channels, the complexityof
this analysis is exponential in the size of the channel in theworst
case. Increasing the channel size (i.e. the length of the send and re-
ceive queues) can cause exponential growth in the state space. This
is true even for very simple contracts, as demonstrated by the state
machine shown in Figure 14.

Figure 15 shows the results of checking the following LTL for-
mula: G(F(m1) \/ F(m2)) against the asynchronous Promela
model compared to the results of checking the same formula against

S1

S→→→→C:m1 S→→→→C:m2

Figure 14: BlowupContract State Machine

Figure 15: BlowupContract Analysis Time and Memory Usage

the synchronous Promela model for the state machine shown inFig-
ure 14.

As channel size increases, the complexity of the asynchronous
analysis grows exponentially. With a channel size of 9, all available
memory on our test machine is consumed and analysis fails. How-
ever, analysis using the synchronous model takes only 38ms and
consumes just over 4.5mb of system memory. Given this potential
for exponential blow up, it is possible for realizability analysis in
phase 1 to fail and for exhaustive analysis in phase 2 to produce no
conclusive results.

However, Singularity enforces a finiteness property on contract
state machines [4], which requires that in all cycles at least one
message is sent and at least one message is received. This property
effectively restricts the channel queue size to a finite bound, and
prevents specification of contracts of the type shown in Figure 14.
This restriction enables sound analysis. If we pick a channel size
that is greater than the length of the longest possible cyclein the
contract specification, then, given sufficient memory, the verifica-
tion results produced using the bounded Promela model are sound.
This does not eliminate the potential for exponential statespace ex-
plosion, however. Figure 16 shows a type of contract which satis-
fies the finiteness property and is allowed by Singularity’s contract
verifier, but which will still cause exponential blowup similar to
the one shown in Figure 15 when performing exhaustive verifica-
tion against an asynchronous model. In this case, the complexity of
the analysis grows exponentially in the size of the state machine.

Phase 3: LTL Property Verification: In phase 3 of our analysis,



S1

S2

…

Sk

S→→→→C:m1 S→→→→C:m2

S→→→→C:m1 S→→→→C:m2

S→→→→C:m1 S→→→→C:m2

C→→→→S:m3

Figure 16: BlowupKContract State Machine

we check that the LTL formulas provided by the user hold for the
given channel contract. These LTL formulas specify properties that
are expected to hold for any possible message sequence generated
by peers that behave according to the contract specification. We use
Spin to check these LTL formulas against either the synchronous
or asynchronous models. Taking theKeyboardDeviceContract
from Section 2 as an example, we specified following LTL formulas
to characterize expected behaviors of this contract:

// Once the Success message is sent, the GetKey or
// PollKey message will eventually be sent
G( Success -> F( GetKey || PollKey ) )
// Once the PollKey message is sent, eventually the
// AckKey or NakKey messages are sent
G( PollKey -> F( AckKey || NakKey ) )
// Once the GetKey message is sent, eventually the
// AckKey or NakKey messages are sent
G( GetKey -> F( AckKey || NakKey ) )

If phase 1 was successful, we check the LTL formulas against
the more efficient synchronous model. If phase 1 fails, we check
the formulas against the full asynchronous model. Table 3 shows
a comparison of the efficiency of checking LTL formulas against
these two types of models for a representative subset of Singularity
contracts.

Analysis Efficiency: Table 4 shows the total processing time of the
three phases of our analysis for each of the contracts shown in Ta-
ble 3. For each of these contracts, phase 2 analysis was soundas we
chose a channel size that exceeded the length of the longest cycle
(which was 5). In all, we performed phase 1 and phase 2 analy-
ses against 93 contracts in the Singularity code base. Realizability
analysis in Phase 1 is very efficient, taking 1.3 ms on average. Ex-
haustive deadlock detection in phase 2 is considerably moreexpen-
sive, taking 553ms on average. Among the contracts implemented
in version 1.1 of the Singularity RDK, we did not observe the worst
case exponential blow-up with respect to channel size in phase 2 of
our analysis as described in section 4. However, using a channel
size of 8, we observed that the phase 2 analysis time increased with
the number of contract states in an exponential trend, as indicated
in Figure 17.

These results demonstrate the value of the realizability analysis
performed in phase 1. Our analysis found that, all contractsin ver-
sion 1.1 of the Singularity RDK and all but one in version 2.0 (the
TpmContract described in Section 2) are realizable, and therefore
are deadlock-free and can be verified using synchronous models.
This saves the cost of phase 2 analysis and increases the efficiency

Table 3: LTL Verification Performance
Contract Name Model Transitions States Memory

Type (MB )
CompilerPhaseContract Async 1991 1269 0.338

Sync 233 168 0.272
DirectoryServiceContract_4 Async 77155 48287 4.643

Sync 3477 1934 0.254
FatClientContract Async 2033 1268 0.355

Sync 175 121 0.282
GameContract Async 1900 1174 0.353

Sync 266 179 0.280
GamePlayerContract Async 1161 758 0.260

Sync 181 122 0.282
KeyboardDeviceContract Async 1467 860 0.264

Sync 147 88 0.284
MapPointProxyContract Async 1353 800 0.252

Sync 117 85 0.278
NicDeviceContract Async 2861 1679 0.340

Sync 349 209 0.274
SmbClientControllerContract Async 894 517 0.264

Sync 126 78 0.283
TcpConnectionContract Async 20161 14026 1.923

Sync 555 341 0.252
UdpConnectionContract Async 15538 8633 1.263

Sync 1271 601 0.255

Table 4: Processing Time for Each Phase (in ms)
Contract Name Phase 1 Phase 2 Phase 3 Phase 3

(Sync) (Async)
CompilerPhaseContract 1 392 38 37
DirectoryServiceContract_4 3 1438 37 219
FatClientContract 1 340 36 49
GameContract 1 370 34 40
GamePlayerContract 1 335 36 40
KeyboardDeviceContract 1 375 36 37
MapPointProxyContract 1 353 46 43
NicDeviceContract 1 401 37 60
SmbClientControllerContract 1 344 37 47
TcpConnectionContract 2 1010 40 82
UdpConnectionContract 1 725 51 68
Average 1.27 553 39 66

of the phase 3 analysis. This also indicates that, although Singu-
larity’s language semantics and contract verifier allow forunreal-
izable and even deadlocking contracts, developers, eitherthrough
intuition or explicit convention, rarely create these types of prob-
lematic contracts. Also, the two contracts that failed our realiz-
ability test (one from the documentation and one from Singularity
RDK version 2.0) allowed interactions that lead to deadlock. Hence
our analysis did not generate any false positives in analyzing real
contracts although we know that this is possible.

7. RELATED WORK
Our work was inspired by the Singularity operating system. Sin-

gularity operating system and its communication mechanisms are
presented in [4, 11]. We have not found a discussion of channel
contract realizability in the papers on Singularity. The Singularity
project focuses on checking conformance of the client and server
processes to the channel contracts. However, as our resultsdemon-
strate, it is also necessary to analyze the contracts themselves.

Our work builds on the earlier work on realizability of conver-
sation protocols [3, 5–7]. In fact the autonomous conditionwe use
in this paper comes directly from this earlier work. However, the
results are significantly different. The conversation protocol model
used in [3, 5–7] is a multi-party model (unlike the two party client
server model used by Singularity channel contracts). Due tothe
complexity of the multi-party interactions, the autonomous prop-



Figure 17: Phase 1 and 2 Analysis Times

erty does not guarantee realizability. There are two other condi-
tions (called lossless join and synchronous compatible in [5, 7])
that are required to guarantee realizability of multi-party protocols.
However, checking these extra conditions can be exponential in the
worst case, whereas the realizability analysis presented in this pa-
per has linear complexity. To the best of our knowledge, the realiz-
ability result reported in this paper (i.e., the autonomouscondition
is a sufficient condition for the realizability of two-partydetermin-
istic conversation protocols) has not been observed before.

The realizability problem dates back to 1980’s (see [1, 13, 14])
where it was defined as whether a peer has a strategy to cope with
the environment no matter how the environment decides to move.
The concept of realizability in this paper is rather different. We are
investigating realizability in a closed system and our definition of
realizability requires that the implementation generatesexactly the
same set of behaviors as specified by the contract. The realizability
problem for Message Sequence Charts (MSC) [12] or MSC graphs
is similar to our definition [2, 16]. However, in the conversation
model we use, a global behavior is modeled as a sequence of send
events. In many other modeling approaches, e.g., MSCs, bothsend
and receive events are captured. Such different modeling perspec-
tives lead to differences in the expressive power and in the difficulty
of analysis and verification problems [7].

Finally, the work on session types [9, 10] also focuses on speci-
fication and analysis of interactions among processes. It provides a
type theoretic approach where potential communication problems
are eliminated by the appropriate restrictions in the type system.
The Singularity project is also influenced by the work on session
types. However, as we demonstrated in this paper, the type system
in Sing# allows specification of contracts that can lead to deadlock.

8. CONCLUSIONS
We showed that Singularity channel contracts can allow dead-

locks. We presented a realizability condition that guarantees ab-
sence of deadlocks. We built a tool that implements our realiz-
ability analysis. We experimented with more than 90 Singularity
contracts and identified two contracts with problems. Our exper-
iments demonstrate that efficient analysis of Singularity contracts
is feasible. Perhaps, the most surprising outcome of our work is
that Sing# programmers were following our realizability condition
most of the time although this condition is not stated anywhere in
the Singularity documentation. And, in two cases where theyfailed
to follow our realizability condition they specified contracts that al-
low deadlocks. Finally, Singularity channel contracts arean excel-
lent example of design for verification, where software is structured
in ways that enable effective verification. Without specification of

channel contracts the problems we identified would be buriedin the
code and would be hard to extract and analyze.

9. REFERENCES
[1] M. Abadi, L. Lamport, and P. Wolper. Realizable and

unrealizable specifications of reactive systems. InProc. of
16th Int. Colloq. on Automata, Languages and Programming,
volume 372 ofLNCS, pages 1–17. Springer Verlag, 1989.

[2] R. Alur, K. Etessami, and M. Yannakakis. Realizability and
verification of MSC graphs. InProc. 28th Int. Colloq. on
Automata, Languages, and Programming, pages 797–808,
2001.

[3] T. Bultan, X. Fu, R. Hull, and J. Su. Conversation
specification: A new approach to design and analysis of
e-service composition. InProc. 12th Int. World Wide Web
Conf., pages 403–410, May 2003.

[4] M. Fähndrich, M. Aiken, C. Hawblitzel, O. Hodson, G. C.
Hunt, J. R. Larus, and S. Levi. Language support for fast and
reliable message-based communication in singularity os. In
Proc. 2006 EuroSys Conf., pages 177–190, 2006.

[5] X. Fu, T. Bultan, and J. Su. Conversation protocols: A
formalism for specification and analysis of reactive
electronic services.Theoretical Computer Science,
328(1-2):19–37, November 2004.

[6] X. Fu, T. Bultan, and J. Su. WSAT: A tool for formal
analysis of web services. InProc. 16th Int. Conf. on
Computer Aided Verification, pages 510–514, 2004.

[7] X. Fu, T. Bultan, and J. Su. Synchronizability of
conversations among web services.IEEE Transactions on
Software Engineering, 31(12):1042–1055, December 2005.

[8] G. J. Holzmann.The SPIN Model Checker: Primer and
Reference Manual. Addison-Wesley, Boston, Massachusetts,
2003.

[9] K. Honda, V. T. Vasconcelos, and M. Kubo. Language
primitives and type discipline for structured
communication-based programming. In7th European
Symposium on Programming on Programming Languages
and Systems (ESOP’98), pages 122–138, 1998.

[10] K. Honda, N. Yoshida, and M. Carbone. Multiparty
asynchronous session types. InProc. 35th Symp. on
Principles of Programming Languages, pages 273–284,
2008.

[11] G. C. Hunt and J. R. Larus. Singularity: rethinking the
software stack.Operating Systems Review, 41(2):37–49,
2007.

[12] Message Sequence Chart (MSC). ITU-T, Geneva
Recommendation Z.120, 1994.

[13] A. Pnueli and R. Rosner. On the synthesis of a reactive
module. InProc. 16th ACM Symp. Principles of
Programming Languages, pages 179–190, 1989.

[14] A. Pnueli and R. Rosner. On the synthesis of an
asynchronous reactive module. InProc. 16th Int. Colloq. on
Automata, Languages, and Programs, volume 372 ofLNCS,
pages 652–671, 1989.

[15] Singularity design note 5 : Channel contracts. singularity rdk
documentation (v1.1).
http://www.codeplex.com/singularity, 2004.

[16] S. Uchitel, J. Kramer, and J. Magee. Incremental elaboration
of scenario-based specifications and behavior models using
implied scenarios.ACM Transactions on Software
Engineering and Methodology, 13(1):37–85, 2004.


