Analyzing Singularity Channel Contracts °

Zachary Stengel

and Tevfik Bultan

Computer Science Department
University of California
Santa Barbara, CA 93106, USA
{zss,bultan}@cs.ucsb.edu

ABSTRACT

This paper presents techniques for analyzing channelaxtrgpec-
ifications in Microsoft Research’s Singularity operatingtem. A
channel contract is a state machine that specifies the dlevila
teractions between a server and a client through an asymatiso
communication channel. We show that, contrary to what isred
in the Singularity documentation, processes that faithfiollow a
channel contract can deadlock. We present a realizabitiglya
sis that can be used to identify channel contracts with probl
Our realizability analysis also leads to an efficient vesifion ap-
proach where properties about the interaction behavioheaver-
ified without modeling the contents of communication chdsine
We analyzed more than 90 channel contracts from the Singular
ity code distribution and documentation. Only two contsgeiled
our realizability condition and these two contracts alleadlocks.
Our experimental results demonstrate that realizabiliglgsis and
verification of channel contracts can be done efficientingisur
approach.

Categories and Subject Descriptors

D.2.4 [Software Engineering: Software/Program Verification—
formal methods, model checking

General Terms
Verification

Keywords
realizability, conversations, asynchronous commuricati

1. INTRODUCTION

Singularity is a new, experimental, operating system dged
by Microsoft Research to explore new approaches to OS dgklgn
One of its main goals is to improve the dependability of safev

*This work is supported by NSF grants CCF-0614002 and CCF-
0716095.

Permission to make digital or hard copies of all or part of thiork for

personal or classroom use is granted without fee providatidbpies are
not made or distributed for profit or commercial advantage #yat copies
bear this notice and the full citation on the first page. Toycoiherwise, to
republish, to post on servers or to redistribute to listquies prior specific
permission and/or a fee.

WOODSTOCK97 El Paso, Texas USA

Copyright 200X ACM X-XXXXX-XX-X/XX/XX ...$5.00.

systems by rethinking some design decisions that havelyegge-
erned operating system architecture to date. Procesdiisola

a chief design principle of the Singularity operating systeTo
achieve this, certain constraints are enforced to ensueeps in-
dependence. Among these is the rule that processes cararet sh
memory with each other or the kernel. All inter-process camm
nication in Singularity, therefore, occurs via messagesipasover
bidirectional conduits, called channels.

Channels have two end points referred to as the client and the
server. The client and the server processes use the charmaht
municate with each other by sending and receiving messa&ges-
munication through Singularity channels correspond tmelssonous
communication via FIFO queues. When a process sends a messag
through a channel, the message is appended to a message fueue
message that is at the head of a message queue is removetiéom t
message queue when a receive action is executed by theingceiv
process at the other end of the channel.

In Singularity, each channel is governed by a channel coriita
15]. A channel contract is basically a state machine thatispe
fies the allowable ordering of messages between the cliehtren
server. Singularity processes are written in an extensfo@#
called Sing#, which provides constructs for writing chancen-
tracts. The Sing# compiler statically checks that the @ees that
communicate through a channel conform to the channel azintra
Singularity Design Note 5 [15] claims that client and serpes-
cesses that are verified with respect to a channel contragfuar-
anteed not to deadlock. In this paper, we show that this isoet
rect. In fact, we show two Singularity channel contractg tiow
deadlocks, one from the Singularity documentation and oo f
the Singularity code distribution.

The major contributions of this paper afd) We refine the real-
izability conditions from earlier work on multi-party coexsation
protocols [5], and apply them to channel contracts in the&ar-
ity operating system. The new result we present in this paper
that autonomous condition is a sufficient condition for thaeliz-
ability of two-party deterministic conversation protosalhereas
the earlier results require two additional conditions taiguntee re-
alizability of multi-party conversation protocols. Mones, the au-
tonomous condition is not directly applicable to channeitcacts
since all channel contracts violate the autonomous camdifithe
Channel d osed messages are taken into account. In this paper,
we show that th€hannel A osed messages can be ignored during
realizability analysis due to the specific channel closiegnantics
of the Singularity channelg2) We present a tool, called Tune, for
analyzing the correctness of Singularity channel congraithile
Singularity’s type checker provides conformance checkairesy
contract implementations, our tool is able to verify thereotness
of the contracts themselves, independent of any particoipte-

mentation. If potential problems are found, our tool ugbzthe
Spin model checker to generate a specific counter-examplad-I
dition, our tool generates Promela models for Singularitytcacts,
which can be used in conjunction with Spin to verify applicat
specific LTL properties(3) We experimentally evaluate the effec-
tiveness of our approach by analyzing a large set of charorel ¢
tracts from the Singularity code base. Our results dematesthat
our analysis techniques are efficient and are able to igefatifity
channel contracts that allow deadlocks.

In this paper, we formalize the semantics of channel cotgrac
and define the following realizability problem: Given a cheh
contract, is it possible to find client and server implemgate
that generate all the message sequences specified by theethan
contract without causing any deadlock. Moreover, we presen
sufficient condition for realizability of the channel caatts. The
realizability condition simply states that all the traiiis that orig-
inate in the same state should have the same sender. l.enda se
transition initiated by the client and a send transitiortiatéd by
the server cannot originate from the same state. This dondi
sufficient for showing realizability; however, it is not aaessary
condition: There are realizable channel contracts thdateathis
condition. Although our realizability analysis can genergalse
positives, our experiments on the channel contracts peovid the
Singularity code base and documentation show that ourzedzlt
ity condition is not too restrictive. We analyzed more th&nSin-
gularity contracts and only two of them failed our realizepicon-
dition. And, the two contracts that failed our realizalyiltondition
have deadlocks, i.e., we did not observe any false positivesr
experiments.

We implemented our approach in a tool called Tune. Sing#-chan
nel contracts are analyzed using Tune in three phases. kePha
Tune simply checks the realizability condition. If the c@t fails
the realizability test, then we go to Phase 2. In Phase 2, §ane
erates a Promela specification (input language of the Spiemo
checker [8]), and uses the Spin model checker to look for a-dea

lock. If Spin finds a deadlock, the message exchange sequence

that leads to deadlock is reported to the user. Finally, iasel
we use the Spin model checker to verify LTL properties abbat t
channel contracts. These LTL formulas specify properties are
expected to hold for any possible message sequence gahbyate
peers that behave according to the contract specificatiare tB
asynchronous communication, the state space can be urdmbund
(if the channels are unbounded). Since Spin is a finite stattem
checker, we have to bound the channel sizes.
given channel contract satisfies our realizability conditithen it

is not necessary to use asynchronous communication sesaltti

is guaranteed that the behaviors generated by the synasamal
asynchronous communication semantics are equivalent as fae
messages sequences are concerned. Hence, we can verinthe s
chronous model and avoid the potential state space expldsi®to
channel contents. Our experiments show that Singularityraots
can be analyzed efficiently using our approach.

2. CHANNEL CONTRACTS

A Singularity channel consists of exactly two endpointgemed

to as peers. Channel endpoints are asymmetric, with one@nd b
ing designated as the exporting end and the other desigtia¢ed
importing end. Messages sent over a channel are guaramtded t
received in FIFO order. For every contragta type is defined for
interacting with each endpoint. Exp for the exporting endpoint,
andC. | np for the importing endpoint. An endpoint can only be
owned by at most one thread at any time, which is responsile f
dequeuing and processing messages sent to an endpointy&1].

However, if the

StateDeclaration ::= Stateld : { MessageSequerice}
MessageSequence= Action Continuation

Action ::= Messageld | Messageld?
Continuation ::= ;
| -> Stateld Continuation
| -> MessageSequence
| -> Choice
Choice = (MessageSequencéor MessageSequende)
Stateld ::= chars+

Messageld::= char s+

Figure 1: Singularity Channel Contract Specification Synt

public contract KeyboardDeviceContract {
state Start: {
Success! -> Ready;

}
state Ready: {
Get Key? -> Wi ting;
Pol | Key? -> (AckKey! or NakKey!) -> Ready;

}

state Waiting: {
AckKey! -> Ready;
NakKey! -> Ready;

Figure 2: An Example Channel Contract

refer to the owner of the exporting endpoint as the serverthad
owner of the importing endpoint as the client. Process conimu
cation over Singularity channels is governed by a channaract.
A channel contract defines the following:

e The set of messages that may be transmitted over the chan-
nel.

¢ A finite state machine recognizing valid sequences of mes-
sages sent between two peers (client and server).

Figure 1 shows the basic syntax for contract state machiclarde
tions.

The first state declaration in a contract is considered thilin
state. Each state is defined by a series of message sequénces.
message sequence begins with an action, which can be estigr s
ing a message from the server to the client or sending a messag
from the client to the server. Contracts are written from plee-
spective of the server; thus a message sent by the servatiis in
cated by a following the message name, and a message sent by
the client is indicated by a following the message name.

An action is followed by a continuation, which can be one of
the following: 1) Empty, ending the message sequence; 2ai st
followed by another continuation; 3) A message sequenc4) Ar
choice among two or more message sequences. Continuagens b
ginning with either a message sequence or a choice areieéfigct
short-hand to avoid declaring an explicit state; in thessesaan
implicit state is created as part of the contract protocol.

Either peer may at any time send a spectannel Cl osed mes-
sage, after which point, that peer can no longer send message
However, the other peer may continue to send or receive gessa
according to the contract. Once both peers have sent the
Channel d osed message, the channel is fully closed, and this is
the implicit final state of the channel contract. Also a staktech
defines no message sequences is considered an explicittéital s
When a channel is in an explicit final state the only messadetwh
may be sent is thehannel C osed message.

S- C:AckKey S- C:AckKey

C - S:GetKey C - SiPollKey (=-==-3-====y
» Ready$0 !

Mmoo em

Waiting ¢

S- C:NakKey

S~ C:NakKey

Figure 3: KeyboardDeviceContract State Machine

Figure 2 shows a simplified version of a contract governing a
channel used by Singularity for interacting with a keybodet
vice. A full contract would also include explicit messagelde
rations; however they are omitted here for simplicity. Than-
tract defines three explicit statest art, Ready, andWai ti ng,
and also contains an implicit state as the target ofRbid Key?
action. Figure 3 shows the state machine that correspontieto
Keyboar dDevi ceCont r act channel contract. The implicit state
is indicated by a dashed border. Also, in the Figure 3, we shew
sender and the receiver of each message expli€ths Sdenotes
a message sent by the client to the server, &nd C denotes a
message sent by the server to the client.

This contract begins in th& ar t state and transitions inReady
state when the server sendducess message. Once in tiReady
state, the client may send either thgt Key message or theol | Key
message. If theet Key message is sent, the channel contract tran-
sitions to thewai ti ng state. If thePol | Key message is sent,
the contract transitions to an implicit state, nanfechdy$0 in
Figure 3. From either of these states, the server may sehdreit
the AckKey or NakKey message, which will transition the contract
back to theReady state. Note that the actions that correspond to
sending of theChannel O osed message and the implicit states
created due to these actions are not shown in Figure 3.

Channel Closing: In Figure 4, we show the hierarchical state ma-
chine that corresponds k@yboar dDevi ceCont r act with the im-
plicit states for channel closing included. Stagsrt, Ready,
Ready$0, andWai ti ng are denoted as S, R, RO, and W in Fig-
ure 4. The hierarchical state machine shown in Figure 4 stmsi
of 3 super-states (0,0), (C,0), (O,C), and one final stat€)C,
State (C,C) indicates that both the client and server hapsed the
channel, whereas state (O,0) indicates that neither of tiesed
the channel yet. Similarly, state (C,0) indicates that ahéy/client
has closed the channel whereas state (O,C) indicates tlyathen
server has closed the channel.

The four transitions among the three super-states and #te st
(C,C) correspond to multiple individual transitions amahg sub-
states. While in a substate of the super-state (O,0), if lieatc
sends thechannel d osed message, then the state machine tran-
sitions to the corresponding sub-state of the super-s@ate)(For

example, from the state R(O,0), when the client sends the
Channel d osed message, the state machine goes to the state

R(C,0). Similarly, while in a substate of the super-stateQQif
the server sends thehannel Cl osed message, then the state ma-
chine transitions to the corresponding sub-state of therssiate
(O,C). Note that, this is not the standard semantics for rduest-
tions in hierarchical state machine languages such ascBtats,
but it is what we need to model the channel closing semantics.
Neither peer is allowed to send any other message afterrsgndi

S-C:Success

S C:AckKey S C:AckKey

.........

S- C:NakKey S C:NakKey
C-S:ChannelClose S C:ChannelClosed
C,0
Lco] ©.0)

S-C: Success
S C:AckKey S C:AckKey
C-S:GetKey
-------- . R(O,C 1 }
TG | (©0) j—! RoOC) |

C - SPoliKey

S-C:NakKey S~ C:NakKey

S C:ChannelClosed C - S:ChannelClosed

Figure 4: KeyboardDeviceContract with the Implicit Statesfor
Channel Closing shown as a Hierarchical State Machine

C - S:Request

S- C:Succeed C - S:Cancel

S- C:Failed

C - S:Cancel

C - S:Confirm, C- S:Cancel S_ C:Cancelled
C)—

Figure 5: ReservationSession State Machine

the Channel Cl osed message. So, in the sub-states of the super-
state (C,0), there are no transitions where client is theleemnd

in the sub-states of the super-state (O,C) there are noittcarss
where the server is the sender. However, after one peerscthee
channel, the other peer can still send messages until itchdses

the channel. When both peers close the channel we reach #he fin
state (C,C).

2.1 Contracts with Problems
In the Singularity Design Note 5 [15], it is stated that

"clients and servers that have been verified separately
against the same contract C are guaranteed not to dead-
lock when allowed to communicate according to C."

The channel contract analysis we present in this paper @enedv
two contracts which show this statement to be false. We dsscu
these two contracts below.

ReservationSession Contract:The first Singularity contract we
discovered demonstrating the potential for deadlock itedahe

Table 1: ReservationSession Deadlock Scenario

Server Action Time Step | Client Action
10 Send:Request AckKey? Success? AckKey? AckKey! Success! AckKey!
o Scsestea [
- Waiting 3 Ready$0 + iti Ready$0 +
T3 Send- Cancel - L_Ready$0, | Waiting Ready d Ready$9_,
Recv: Cancel T4 NakKey? NakKey? NakKey! NakKey!
Client Server
. ReadyState$0 . —)
/y --------- \ Figure 7: Projection of the KeyboardDeviceContract to the

C-SsSend S~ C:AckStartSend Client and the Server

S C:SendComplete
I0_RUNNING

peers are in th@eadSt at e$0 state. After step T3, both peers are
in thel O_RUNNI NG state. After step T4, the server transitions to
the Ready St at e state. However, after step T5, the client tran-
sitions to thel O_RUNNI NG$0 state. Deadlock is now inevitable.
. X At step T6, the server receives ti@et Tpntt at us message and
| I0_RUNNINGSO | responds, at step T7, by sending thentt at us message. The
"""""""""" server is in theReady St at e state waiting for the client to send
)) the Send or Get TpnSt at us messages; however, the client cannot
Figure 6: TpmContract State Machine make progress because hendConpl et e message is at the head
of its receive queue, for which there is no valid transitiohhe
) . channel is therefore deadlocked. Note that, although tbbl@ms
Reservati onSessi on contract. Itis an example contract given \yith hoth of these contracts involve transitions to implisiates,
in the Singularity RDK documentation [15]. It defines thetsta ihere is no difference between implicit and explicit statéth re-
machine shown in Figure 5. Table 1 shows an interleaving lid va spect to this type of problems. The equivalent contracth witly

ReadyState

C - S:GetTpmStatus C - S:GetTpmStatus

S- C:TpmStatus S- C:TpmStatus

client and server actions according to this contract theddeto a explicit states will exhibit the same problems.
deadlock. o _) Here is an interesting distinction between the channelraont
After step T4, the server is in the termiriaid state. The client, shown in Figure 3 and the channel contracts shown in Figures 5

however, is in theeci de$0 state waiting for the serverto send the 544 6: If a client and a server implement the contract in 3 by si
Cancel | ed message. Neither peer can therefore make Progress, ply using the projections of the contract machine (where radse

and the channel is deadlocked. ,) , action for the server becomes a receive action for the chiesk

_ Although this contract is given in the Singularity docurign, visa versa), then the resulting system will follow the cantrand
itis not included as code in the Singularity distributione Weated will not deadlock. In Figure 7, we visually show the projectiof

a user application containing this contract and added heaistri- theKeyboar dDevi ceCont r act to the client and the server. How-
bution. The contract compiled and passed Singularity Bcster- ever, if we do the same for thReser vat i onSessi on contract
ification checks. Our application was allowed to run and weewe ghown in Figure 5 and thepnCont r act contract shown in Fig-
gble to witness the deadlock scenario, demonstrat_ing thgu_&r- ure 6, the resulting system can deadlock. Below, we forraliz
ity processes can deadlock even when they are faithfullgwahg this difference as the realizability problem for channehtracts:

a channel contract. Keyboar dDevi ceCont r act is realizable whereas

Reser vat i onSessi on andTpnCont r act are not. Moreover, we

TpmContract: The second contract we discovered violating the ", L " S
P 9 give a sufficient condition for the realizability of chanmeintracts.

claim that Singularity contracts are deadlock-free, is the
TprCont r act . This contract is included in version 2.0 of the Sin-
gularity RDK and is used by a component of the Singularity\kér 3. AFORMAL MODEL

Our analysis shows that it is possible for a client and setivar A channel contract automatois a tupleA = (M, S, I, F,0)
obey this contract to deadlock. The state machine for thigraot whereM is the finite set of messages (the alphahgt the finite
is shown in Figure 6. set of states] € S is the initial state,;" C T is the set of final
Table 2 shows an interleaving of valid client and servercensti states, and C S x M x S is a deterministic transition relation,
that can lead to deadlock in this contract. After step T1 ecthe i.e.,(s,m,s’) € dand(s,m,s"”) € § implies thats’ = s”. (Since

Send message is sent by the client and received by the server, bothSingularity does not allow multiple transitions from thersacon-
tract state with the same message label, the transitiotiae$aof
the channel contract automata are deterministic.)

A channel contract automaton recognizes sequences of gasssa

Table 2: TpmContract Deadlock Scenario i.e., members of the séi/*. We call each such message sequence

Server Action Time Step | Client Action !

T0 Send- Send a conversation The language accepted by a channel contract au-
Recv: Send T1 tomaton A is denoted byL(A) C M™*, and it specifies the set
Send: AckSt art Send % S of allowable conversations (i.e., the set of allowable ragesse-

ecv: ar n H H

Send SendCompT et e 7 quences) between a client and a server according to the ehann

TS Send: Get Tprbt at us contract. . -
Recv: Get Tpn&t at us T6 The set of messages is partitioned to two sgéfs= M. U M,
Send: Tpnbt at us 7 where M. is the set of messages that the client can send to the

server andM; is the set of messages that the server can send to

the client. In order to simplify our technical model we assuimat
M. N M, = 0. This does not reduce the generality of our model.
If there are messages that both peers can send (for exarhple, t

An asynchronous channel systdPa || P, consists of two state
machines: the client state machife = (M, S., I., F.,d.) and
the server state maching = (M, Ss, Is, Fs, 0s) whereM is the

Channel O osed message), we add the sender’s initial to such mes- finite set of messageS, andS; are the finite sets of states, € S,

sages to identify the sending peer (for examptaannel C osed
if the client is the sender arChannel C osed if the server is the
sender).

Given a channel contract and the corresponding channeaiamint
automaton, a server and a client conform to the contrackifsts
guence of messages sent by the server and the client (relcorde
the order they are sent) is a conversation that is acceptatidoy
channel contract automaton. We also require that 1) thespger
not deadlock and 2) all the messages that are sent are elgntua
consumed. We say that a server and a client realize a chaomel ¢
tract if they conform to that contract and, additionallyeyhcan
generate every conversation that is specified by the cdntidle
will formalize these definitions below, after discussing seman-
tics of channel closing.

Channel Closing SemanticsGiven a channel contract automaton
A = (M,S,I,F,5), we model the channel closing semantics by
partitioning the set of states to four sefs= S, U So,c U S¢,0 U
Se,c, where|So.0| = |Se,0| = |So,c| @and|S.,.| = 1. States in the
setS,,, correspond to states before athannel O osed messages
have been sent. States in the Sgt, correspond to states where the
client has sent @hannel d osed message but the server has not.

States in the sef, . correspond to states where the server has sent

a Channel O osed message but the client has not. Finalfy, .
contains a single state which corresponds to the state vilwthe
the client and the server have sent tiannel d osed message,
therefore, the channel is closed, denoting the end of theecsa-
tion. We define the final state as the state after both peeesdent
theChannel O osed message, hencé, = S. ..

Given a channel contract automateh = (M, S, I, F,§) and
S = So,0 USc,oUSocUSc., there exist two functiong.,, :
So,0 — Sc,0,@Ndfo.c : So,0 — So,c SUCh that,

e f.oandf, . are bijections.
e Foreachs € S,,0, (s,CChannelClosed, fco(s)) € 9.

e Foreachs € S,.0, (s, SChannelClosed, fo,c(s)) € §

For anys, s’ € So0, (fe,0(8),m, fe,0(s")) € 4 if and only
if (s,m,s’) € § andm € M.

e Foranys,s’ € So,o, (fo,c(5),m, fo,c(s")) € 4 if and only
if (s,m,s’) € §andm € M..

Finally, we have the following three conditions:

e For eachs € Sco, (s,SChannelClosed,s’) € § where
s'€8Sce=F.

e For eachs € So., (s,CChannelClosed,s’) € § where
s’ €8ce="F.

e There are no transitions that originateSa., i.e., after both
peers close the channel no more messages can be sent.

3.1 Execution Model

In order to formally define the conformance and realizapfiitr
channel contracts, we have to define an execution model laat ¢
acterizes the behaviors of the client and the server presessd
formally defines the semantics of asynchronous commubicaia
unbounded communication channels.

andls € S are the initial states;. C S. andFs C S; are the sets
of final statesg. C S. x M x S. andds C S; x M x S, are the

transition relations for the client and server machinespeetively,

andd. andé, are both deterministic transition relations.

A configurationof a client-server system is a tuple of the form
(Qc, S¢, Qs, ss) Wheres. € S. denotes the state af@. € M
denotes the contents of the incoming message queue of &m, cli
ss € S, denotes the state arigl; € M. denotes the contents of
the incoming message queue of the server.

For two configurations o (Qc, Sc, Qsy8s) and
o' = (Q.,s., Q%, s,), we say that derivess”’, written aso — o,
if one of the following conditions hold:

e Client sends a message (denotedrag!—@” o') wherem €
M., (sc,m, s.) € 8¢, Q% = Qsm, Q.. = Q., ands, = s,.
e Server sends a message (denoted asr o') wherem €
MS! (857 m, 5;) € 55: Q:: - Qcm, le = Qs, andS:: = Sec.

i H ?
e Clientreceives a message (denoted a7 ') wherem €
M, (Sa m, 5::) € Oc, Qc mQ::: Q; = Qs. andsls = Ss.

e Server receives a message (denoted agr ") wherem €
M., (ss,m, s5) € ds, Qs = mQ%, Q. = Q., ands,, = sc.

We use—™ to denote the reflexive transitive closure of the deriva-
tion relation, and we say that is reachable fronz if o —* ¢”.

A run of a channel system is a sequence of configuratioes
o001 .. .0k, SUch that,

1. 00 = (¢, 1Ic, ¢, Is),
2. 0j »oj41for0<j <k, and
3. ok = (€, 5¢,€,85), Sc € F.andss € F.

If v does not satisfy the third condition we call it a partial run.

We say that a channel systef. || Ps is well-behavedif
(e,1c,¢,1s) —™ o impliesc —* (¢, se, €, s5), Wheres. € F, and
ss € Fs. l.e., a channel system is well-behaved if every config-
uration reachable from the initial configuration can redu final
configuration.

Given a run~, the conversation generated by denoted as
conv (), is defined recursively as follows [7]:

e If |y| < 1, thenconu(vy) is the empty sequence.
o If v =+'00’, then

S!'m

— conv(y) = conv(y'o)mif o Lo ore 1 o

— conv(y) = conv(vy' o) otherwise.

A message sequenee € M™ is aconversatiorgenerated by a
channel systen®. || Ps if there exists a complete rupof P, || Ps
such thatw = conv(y). We denote the set of all conversations
generated by a channel systétn || Ps asconv(Ps || Ps). Given
a channel contract automatghand a channel systei. || Ps:

e P. || Ps conforms toA if P. || Ps is well-behaved and
conv(Ps || Ps) C L(A),

e P. || P, realizes A if P. |
conv(Ps || Ps) = L(A).

Ps is well-behaved and

Given a contract automatas, it is easy to generate a channel
system that conforms tal. All the client and server have to do
is to send thechannel C osed messages to each other (and re-
ceive them). Since this simple conversation is part of argnaokel
contract, the resulting channel system will conform to angrmel
contract. However, it is not easy to determine if there exasthan-
nel system that realizes a contract automaton. In fact,ishike
problem with the two example contractReger vat i onSessi on
andTpnCont r act) we discussed earlier. Any channel system that
tries to realize these two contracts can potentially deddlae.,
these channel contracts are not realizable. Next, we prasgm-
ple condition that guarantees realizability of channeltrzmts.

4. REALIZABILITY ANALYSIS

The realizability condition we propose is the followingwe ig-
nore theChannel C osed messages, then there should not be two
transitions from the same state of the contract automatoin that
the client is the sender on one of them and the server is thdesen
on the other one. Either the client should be the sender draal
sitions from a given state or the server should be the sefides.
condition is called the “autonomous” condition [5, 7]. Fadlly, a
contract automatodl = (M, S, I, F, §) is calledautonomousf it
satisfies the following condition

e forall s € S,,, if there exists a transitiofis, m,s’) € ¢
where m € M.\{CChannelClosed}, then for all
(s,m’,s") €8, m € M. U {SChannelClosed}, and

e forall s € S,,, if there exists a transitiofis, m,s’) € ¢
where m € M,\{SChannelClosed}, then for all
(s,m’,s") €, m € My U{CChannelClosed}.

Note that this condition can be checked in linear time in tivaber
of transitions by simply traversing the transitions of tr@ntract
machine.

We will show that if a contract automaton is autonomous, then
it is realizable. In fact, the contract automaton is redlieay its
projection to the client and the server. During projectiariransi-
tion in the contract automaton that is labeled with a messaae
the server sends becomes a send transition for the servexr mnd
ceive transition for the client. A transition labeled wittmessage
that the client sends becomes a receive transition for thveisand
a send transition for the client. Figure 7 shows the propectf
theKeyboar dDevi ceConst r act in Figure 3 to the client and the
server.

Formally, given a contract automatoh = (M, S, I, F,), let
m.(A) denote its projection to the client and(A) denote its pro-
jection to the serverr.(A) = (M, Se, I., F¢, é.) whereS. = S,
I.=1,F. = F,anddé. = 6, andns(A) = (M, Ss, L, Fs, 0s)
whereS, = S, I, = I, F, = F, andds = ¢ (i.e., the client and
server machines are identical with the contract automakbanonly
difference is the interpretation of the transitions). Hisreur main
realizability result:
if A

THEOREM 1. Given a contract automatonA, is

autonomous, then.(A) || ws(A) realizesA.

1) 7. (A) || ws(A) is well-behaved: Given an autonomous con-
tract automaton4 (M, S,1,F,¢), and the channel system
me(A) || ms(A), for every configurationr = (Q¢, sc, Qs, Ss)
wheres. € S,,, ands, € S,,, ando is reachable from the initial
configuration(e, I, ¢, I), the following holds: EitheQ. = ¢ and
the configurations’ = (e, s, €, sc) is reachable fronw by only
executing receive transitions by the serverr= ¢ and the con-
figurationo’ = (e, ss, €, s5) is reachable frona by only executing

receive transitions by the client. This can be proved by atidn

on the length of the rur that reaches. Due to autonomous con-
dition, either all the transitions from the initial stateeaend tran-
sitions by the server or they are all send transitions by tiesnic
Without loss of generality, assume that it is the server wéreds
the first message. Then, the only transition that the clianttake

is to receive that message. If the server has another semsi-tra
tion from its new state, then it can send another messageebefo
client receives the first message. However, the client vatl e
able to send a message before it receives all the messadds/sen
the server. Moreover, the client can only reach a state wihbes

a send transition after receiving all the messages sentedgettver
(since the client and the server have identical deterniingtate
machines). At that point the server must be waiting at theesam
state since all the transitions from that state are recearesitions
for the server and it has to wait for the client to send a mesbag
fore it can proceed. The autonomous condition basicallyantaes
that the client and the server run in a token-passing stykrathey
alternate between message sending and message receigsesph
Before each send action, each process receives all the gesssa
its incoming message queue, i.e., the incoming message gqieu
a process that is sending a message is always empty. When both
queues are empty, both processes are in the same conttact sta

In the above discussion we only considered the states before
any Channel Cl osed message has been sent. Assume that client
sends the firsthannel d osed message. If the client sends the
Channel d osed message when its channel queue is empty, then
based on the above property, the server can execute a seres o
ceive transitions that terminates by receiving thennel Cl osed
message. After that, the server is the only peer that canrsesd
sages, and the client can only receive the messages sentby th
server. The server at any moment can sendtennel Cl osed
message and when the client receives that message, boshwker
be in the final state and the message queues will be empty.

If the client sends thehannel O osed message when its chan-
nel queue is not empty, then based on the above propertyli¢né c
can continue to execute a series of receive transitions. rittne
server receives thenannel O osed message sent by the client and
when the client receives all the messages in its incomingages
queue, both peers will be in the same state. They can both reac
the final state when the server sendschennel O osed message
and the client receives it. Symmetric arguments hold forcdmses
when the server sends the fi@tannel O osed message.

2) conv(mc(A) || ms(A)) = L(A): Itis relatively easy to show
that L(A) C conv(w.(4) || ms(A)). For any conversation recog-
nized by A, we can simulate the executiondfby 7. (A) || ws(A)
by executing each receive action immediately after theespond-
ing send action. l.e., at any configuration there is at most on
queue that is not empty and it holds at most one message. We
call such a run an immediately receiving run. In order to sliost
conv(me(A) || ms(A)) C L(A), we argue that, ifA is autonomous,
then for any runy of 7.(A) || ms(A), there exists another rugl
of m.(A) || 7s(A) such thaty’ is an immediately receiving run
and conv(y’) = conv(v). Since the execution of.(A) || 7s(A)
goes through phases where in each phase only one peer isgendi
messages, we can rearrange the receive actions in eachlsagh p
by moving each receive action right after the correspondiegd.
This will convert the original run to an immediately receigirun
without changing the conversation.

Note that an immediately receiving run is equivalent to exieg
the client and the server with the synchronous communicate
mantics where the send and the receive actions occur togatde
the message queues are not used. The set of conversati@rs gen

Channel
Contract

Contract Model

Contract
Analyzer

Asynchronous
Model Generato

Async
Promela

Synchronous
Model Generator

Sync
> Promela

--» Consumed by
=P Produces

[=] File
[:] Tune

Component

Report

External
Tool e

Figure 8: Tune Architecture

ated by the synchronous composition of the client and theeser
is equal to the conversations generated by the runs with oirate
receives. Finally, note that, the synchronous composifari. (A)
andr,(A) is identical toA itself (synchronous composition simply
combines the send and receive transitions in the peer netiat
correspond to the projection of the same transitiomjn Hence,
we conclude thatonv(mw.(A) || ws(A4)) C L(A).

LTL Model Checking: In addition to checking the realizability of
a channel contract, we may also want to check propertiestdbeu

typedef Endpoi nt
{

chan Send = [Channel Si ze] of { ntype };
chan Recv = [Channel Size] of { ntype };

}
typedef Channel
{

Endpoi nt | np;
Endpoi nt Exp;

Figure 9: Endpoint and Channel declarations in Promela

1. Tune requires all messages specify explicit directioll-
ifiers. Messages must be sent either from server to client, or
from client to server.

2. Tune does not support subroutine states.
3. Tune does not process message parameters.
4. Tune does not support bound variables.

In Sing# contract specifications message parameters danot i
fluence the contract behavior, so we are able to ignore themglu
our analysis. The other three limitations (1, 2 and 4) do hahge
the expressiveness of the contract language, i.e., anyaobnising
these features can be converted to an equivalent contréubwti
them. In practice, we have found these limitations do natifiig
cantly impact our ability to analyze contracts implemenitethe
Singularity code base. 93 out of the 94 contracts includeeein
sion 1.1 of the RDK, and 93 of the 95 contracts in version 2e0 ar
fully recognized and supported by Tune.

Given a contract, the Contract Parser produces a state nachi
model representing the contract. This model is then subthiid
the contract analyzer which checks the realizability ctodiwe
presented earlier. Depending on the results of this detextioin,
the contract model is submitted to one of two model genesator
which create Promela models representing the contract Tar L
verification and deadlock trace generation using the Spidaho
checker. The results produced by Spin are then collectedhéy t
Data Collector, parsed, and used to produce a report camgain

message sequences allowed by the channel contract. We se LT Pass/fail result of verification along with analysis stats and an

formulas to specify properties about the conversationfstbent-
server channel system or a channel contract. During LT Lficari
tion we only investigate the behaviors before @hynnel C osed
message is sent, i.e., we only model the stateS,ip. We use
the results of the realizability analysis to improve the ciincy
of LTL verification. Since realizability of a channel conttam-
plies thatconv(w.(A) || ms(A)) = L(A), we useA instead of
me(A) || ws(A) during verification of LTL properties about mes-
sage sequences.

5. TUNE: ATOOL FOR ANALYZING
SING# CHANNEL CONTRACTS

We developed a tool called Tune for analyzing Singularitgreh
nel contracts written in Sing#. In addition to checking reatbility
of channel contracts, Tune produces representations abitieact
in Promela (input language of the Spin model checker [8]xdeo
to detect deadlock traces and for LTL verification.

Figure 8 shows Tune’s core architecture. Tune’s Contractd?a
recognizes a valid Sing# contract based on the specificd&fined
in the Singularity Design Note 5 [15], with the following lita-
tions:

error trace if the verification fails.

Asynchronous Promela Model: The Asynchronous Model Gen-
erator is responsible for creating a Promela model of a oblason-
tract that allows for messages to be sent asynchronousliyli#@
message queues between client and server processes. dbissn
the exhaustive exploration of all possible message seesegen-
erated using a given message queue size. Like Singulariynéla
has a built-in channel construct for passing messages batine
dependent and concurrently running processes. Howesg Hre
significant differences between channels in Singularity elnan-
nels in Promela which require special consideration whedetio
ing Singularity channels in Promela. These differenceslaeepri-
marily to the fact that Promela does not have a concept of anghia
endpoint. In Promela, messages sent on a channel are roeine
deterministically by one of any number of listeners on tharutel
for that message. However in Singularity, a channel has at tnwo
processes (client and server) that are communicating @ingu-
larity endpoints also introduce directionality consttaion mes-
sages whereas, in Promela, messages can always be sent in any
direction.

Promela’st ypedef keyword enables the basic structural mod-
eling of Singularity endpoints and channels. To begin thel@ho

proctype Server(Endpoint exp) {
m server|sRunning = true;
/+ Wait for the client to be ready to receive */
mclientlsRunning -> goto START;
START:
exp. Send! OMSG_Success -> goto READY;
READY:
/+* Non-deterministically choose nessage sequence */
if
exp. Recv?[| MSG_Cet Key]
goto WAI TING
exp. Recv?[I MSG_Pol | Key] -> exp. Recv?l MSG_Pol | Key;
/* Inplicit Ready$0 state */
if
;1 exp. Send! OVSG_AckKey -> goto READY;
;1 exp. Send! OVSG_NakKey -> got o READY;
fi;
got o READY;
fi;
WAI TI NG
if

-> exp. Recv?l M5G_GCet Key;

exp. Send! OVSG_AckKey -> got o READY;
;1 exp. Send! OMSG_NakKey -> goto READY;
fi;
}

Figure 10: KeyboardDeviceContract Server proctype

anEndpoi nt typedef is declared containing two Promela chan-
nels, one for sending and one for receivingCiiannel t ypedef

is also declared, consisting of twendpoi nt declarations, one
calledexp (for the server), and the other calledp (for the client).
Figure 9 shows theypedef declarations representing a Singular-
ity endpoint and channel respectively. Promela channelst ioe
bounded, therefore a configuraltieannel Si ze variable is used to
bound the size of theend andRecv endpoint channels. Contract
messages and states are declared as enumerations usirgldom
nt ype construct. The prefixeevSG_ and |1 M5G_ denote mes-
sages sent by the server and the client, respectively, anprdfix
STATE_ is used to identify the states.

Channel contract verification is accomplished using tweesses,
declared using Promelajsr oct ype construct, one representing
the server and one representing the client. The client angise
processes are projections of the contract state machimee $ie
contract is written from the perspective of the server, #rwer pro-
cess directly follows the contract state machine, whilafferclient
process message directions are reversed (i.e., sends &aesm
ceives and receives become sends). In each state, eachpnace
deterministically chooses one of the enabled send or recasiv
tions. Implicit states are not explicitly represented ie ttient and
server processes, but are instead represented as méstedcks
within their preceding explicit state. Figures 10 and 11lvslioe
Promela models representing the server and client proséssthe
Keyboar dDevi ceCont r act described in Section 2.

In addition to the server and client processes, a third p®ce
also declared, which represents the Singularity chanselfitThis
process is responsible primarily for contract monitoriigpolls the
Send channel of both the client and serv&tdpoi nt structures.
Once a message becomes available, it is atomically retrifroen

the Send channel queue, validated against the contract specifica-

tion, and redelivered on theecv channel of the peergndpoi nt .
The atomicity of these steps guarantee the in-order dglvemes-
sages from one process to the other. To allow for granulatracin
monitoring, implicit states are represented explicitlgtie contract
process.

Using these three processes, Spin will exhaustively egpddr
possible interleavings of send and receive actions. Vatifia is
accomplished by defining LTL properties representing ainess

proctype Client(Endpoint inp) {
mclientlsRunning = true;
got o START;
START:
i np. Recv?OVMSG_Success -> goto READY;
READY:
/+* Non-determ nistically choose nessage sequence */
if
;o inp.Send! | MSG _Get Key -> goto WAI TING
: inp. Send! | MSG_Pol | Key ->
/* Inplicit Ready$0 state */
if
i mp. Recv?[OVBG_AckKey]
got o READY;
i np. Recv?[OVSG_NakKey]
got o READY;
fi;
got o READY;
fi;
VAI TI NG
/+* Non-determ nistically choose nessage sequence */
if

-> i np. Recv?OVBG_AckKey;

-> i nmp. Recv?OMBG_NakKey;

;1 inp. Recv?[OMSG _AckKey] -> inp. Recv?OMSG_AckKey;
got o READY;
: i np. Recv?[OVBG_NakKey]

: -> i np. Recv?OVBG_NakKey;
got o READY;

Figure 11: KeyboardDeviceContract Client proctype

criteria, which should never be violated by a valid contraBy
default, Tune defines the following LTL formula for all coatts:
G !'timeout) wheretimeout is a built-in Spin variable that is
false unless no process can make progress. This propestgfone,
enables us to test for deadlocks.

Synchronous Promela Model:The exhaustive explicit state verifi-
cation performed against asynchronous contract modeils ggn-
eral, unsound due to the fact that analysis can cause exjnen
state space explosion, and Promela channel queues musthave
fixed bound. A sound and more efficient alternative is to fiest p
form realizability analysis against the contract. If a ¢ant is de-
termined to be realizable, then it is guaranteed to be dekdtee
and can be verified using an equivalent synchronous modeie Tu
performs realizability analysis against the contract mpdeduced
by the parser, and if the contract is determined to be rdakza
the Synchronous Model Generator is used to create a syrmison
Promela model representing the contract. Figure 12 shosverth
tire synchronous model for théeyboar dDevi ceCont r act .

6. EXPERIMENTS

We developed a three phase approach for the verificationef Si
gularity channel contracts. The first two phases togethézctle
potential deadlocks in the channel contracts, and the titase
checks contract specific LTL properties to verify correste

Phase 1: Realizability Analysis:In the first phase we perform re-
alizability analysis against the contract. If the contiagealizable,
then it is guaranteed to be deadlock-free. Our realizghalitalysis
is sound, however, it is conservative and may produce fabdsé p
tives. For example, Figure 13 shows a version ofTtpkeCont r act
state machine described in section 3.2, which has been fixed t
longer contain a deadlock. Theéd RUNNI NG$1 state and dashed
transitions have been added.

The fixed TpnContract will not deadlock, however, the
I O_RUNNI NG state still violates the autonomous property, and thus
will fail our realizability check. Hence, if a contract fairealiz-
ability analysis, it may or may not contain a deadlock, and th

ntype = {Ready, Ready__1, Start, Witing};
ntype = {m Get Key, m Pol |l Key, m AckKey, m NakKey,
nype state;
ntype nsg;
active proctype CuardedProtocol (){
state = Start;
msg= m undefi ned;

m Success};

do
coif
1: state==Ready ->
d_step{ msg=m Get Key; state=Waiting };
st at e==Ready ->
d_step{ nmsg=m Pol | Key; state=Ready__1};
: state==Ready__1 ->
d_step{ nsg=m AckKey; state=Ready};
state==Ready__1 ->
d_step{ nmsg=m NakKey; state=Ready};
11 state==Start ->
d_step{ nsg=m Success; state=Ready};
;: state==Waiting ->
d_step{ msg=m AckKey; state=Ready};
: state==Waiting ->
d_step{ nsg=m NakKey; state=Ready};
fi;
od;

Figure 12: Synchronous KeyboardDeviceContract Promela
Model

\
C - S:GetTpmStatus
\
\
L}

\
\
' O _/
L i 10_RUNNINGS$0 }
1
|

[—

S- C:TpmStatus

ReadyState$1

\ 3

S C:SendComplete

S- C:TpmStatus
'

[R

i I0_RUNNINGSL

Figure 13: Fixed TpmContract State Machine

motivates the second phase of our analysis.

Phase 2: Deadlock Trace Generationin phase two of our anal-
ysis, we run Spin against the full asynchronous Promela irtode
exhaustively search for deadlock conditions. This phasegsired
only for contracts that fail the realizability analysis ihgse 1. The
analysis in phase 2 produces no false positives—if it findeale
lock, a counter-example trace is generated showing a [greces-
sage sequence that causes deadlock. Since channel sipas anes
bounded, this analysis is unsound in general, i.e., if weatdind
a deadlock trace a deadlock may still exist for a system vaitier
message queues. Also, for bounded channels, the compteXxity
this analysis is exponential in the size of the channel invihest
case. Increasing the channel size (i.e. the length of the e re-
ceive queues) can cause exponential growth in the state.sphais
is true even for very simple contracts, as demonstrated dgtidite
machine shown in Figure 14.

Figure 15 shows the results of checking the following LTL-for
mula: G(F(nmL) \/ F(nR)) against the asynchronous Promela
model compared to the results of checking the same formalimsiy

Figure 14: BlowupContract State Machine

Analysis Time

250000 222164

200000

150000

100000

Analgsi Time (ms)

50000

0

Async

Model Type / Channel Size

Memory Usage

686995

2807.157

657.602

MemoryUsage (MB)
=
=]
a
a

641112856 36587 14645 —

Async

Model Type [Channel Size

Figure 15: BlowupContract Analysis Time and Memory Usage

the synchronous Promela model for the state machine shokiig-in
ure 14.

As channel size increases, the complexity of the asynclusno
analysis grows exponentially. With a channel size of 9,\ailable
memory on our test machine is consumed and analysis faila- Ho
ever, analysis using the synchronous model takes only 38mis a
consumes just over 4.5mb of system memory. Given this patent
for exponential blow up, it is possible for realizability aysis in
phase 1 to fail and for exhaustive analysis in phase 2 to pedo
conclusive results.

However, Singularity enforces a finiteness property on rembt
state machines [4], which requires that in all cycles attleae
message is sent and at least one message is received. Testpro
effectively restricts the channel queue size to a finite bowmnd
prevents specification of contracts of the type shown in feidi.
This restriction enables sound analysis. If we pick a chbsize
that is greater than the length of the longest possible dyctae
contract specification, then, given sufficient memory, thefica-
tion results produced using the bounded Promela model arelso
This does not eliminate the potential for exponential ssptece ex-
plosion, however. Figure 16 shows a type of contract whidissa
fies the finiteness property and is allowed by Singularitgistcact
verifier, but which will still cause exponential blowup siari to
the one shown in Figure 15 when performing exhaustive verific
tion against an asynchronous model. In this case, the carhptd
the analysis grows exponentially in the size of the statehinac

Phase 3: LTL Property Verification: In phase 3 of our analysis,

C-Sm3

Figure 16: BlowupKContract State Machine

we check that the LTL formulas provided by the user hold fa th
given channel contract. These LTL formulas specify prapsithat
are expected to hold for any possible message sequenceatgher
by peers that behave according to the contract specificatieruse
Spin to check these LTL formulas against either the synausn
or asynchronous models. Taking tkeyboar dDevi ceCont r act
from Section 2 as an example, we specified following LTL folasu
to characterize expected behaviors of this contract:

11
11
&
11
11
€}
11
11

&

Once the Success nessage is sent, the GetKey or

Pol | Key nmessage will eventually be sent

Success -> F(GetKey || PollKey))

Once the Pol | Key nessage is sent, eventually the
AckKey or NakKey nmessages are sent

Pol | Key -> F(AckKey || NakKey))

Once the GetKey nessage is sent, eventually the

AckKey or NakKey nessages are sent

GetKey -> F(AckKey || NakKey))

If phase 1 was successful, we check the LTL formulas against
the more efficient synchronous model. If phase 1 fails, weskhe
the formulas against the full asynchronous model. Tabledsvsh
a comparison of the efficiency of checking LTL formulas again
these two types of models for a representative subset ofiirity
contracts.

Analysis Efficiency: Table 4 shows the total processing time of the
three phases of our analysis for each of the contracts showWa-i
ble 3. For each of these contracts, phase 2 analysis was asumel
chose a channel size that exceeded the length of the longdst ¢
(which was 5). In all, we performed phase 1 and phase 2 analy-
ses against 93 contracts in the Singularity code base. Rédity
analysis in Phase 1 is very efficient, taking 1.3 ms on average
haustive deadlock detection in phase 2 is considerably expen-
sive, taking 553ms on average. Among the contracts implesden
in version 1.1 of the Singularity RDK, we did not observe trast
case exponential blow-up with respect to channel size isg@Reaf
our analysis as described in section 4. However, using anghan
size of 8, we observed that the phase 2 analysis time inctesite
the number of contract states in an exponential trend, asatet!

in Figure 17.

These results demonstrate the value of the realizabilialyars
performed in phase 1. Our analysis found that, all contriacter-
sion 1.1 of the Singularity RDK and all but one in version 2te(
TpnCont ract described in Section 2) are realizable, and therefore
are deadlock-free and can be verified using synchronous Ismode
This saves the cost of phase 2 analysis and increases thergdfic

Table 3: LTL Verification Performance
Contract Name Model | Transitions | States [Memory
Type (MB)
CompilerPhaseContract Async 1991 1269 0.338
Sync 233 168 0.272
DirectoryServiceContract_4 | Async 77155 | 48287 4.643
Sync 3477 | 1934 0.254
FatClientContract Async 2033 1268 0.355
Sync 175 121 0.282
GameContract Async 1900 1174 0.353
Sync 266 179 0.280
GamePlayerContract Async 1161 758 0.260
Sync 181 122 0.282
KeyboardDeviceContract Async 1467 860 0.264
Sync 147 88 0.284
MapPointProxyContract Async 1353 800 0.252
Sync 117 85 0.278
NicDeviceContract Async 2861 1679 0.340
Sync 349 209 0.274
SmbClientControllerContrac{ Async 894 517 0.264
Sync 126 78 0.283
TcpConnectionContract Async 20161 | 14026 1.923
Sync 555 341 0.252
UdpConnectionContract Async 15538 8633 1.263
Sync 1271 601 0.255

Table 4: Processing Time for Each Phase (in ms)

Contract Name Phase 1| Phase?2| Phase 3| Phase 3

(Sync) | (Async)
CompilerPhaseContract 1 392 38 37
DirectoryServiceContract_4 3 1438 37 219
FatClientContract 1 340 36 49
GameContract 1 370 34 40
GamePlayerContract 1 335 36 40
KeyboardDeviceContract 1 375 36 37
MapPointProxyContract 1 353 46 43
NicDeviceContract 1 401 37 60
SmbClientControllerContrac 1 344 37 47
TcpConnectionContract 2 1010 40 82
UdpConnectionContract 1 725 51 68
Average 1.27 553 39 66

of the phase 3 analysis. This also indicates that, althoughuS
larity’s language semantics and contract verifier allowdoreal-
izable and even deadlocking contracts, developers, ditiheugh
intuition or explicit convention, rarely create these typ# prob-
lematic contracts. Also, the two contracts that failed cealiz-
ability test (one from the documentation and one from Siadtyl
RDK version 2.0) allowed interactions that lead to deadldténce
our analysis did not generate any false positives in anadyeeal
contracts although we know that this is possible.

7. RELATED WORK

Our work was inspired by the Singularity operating systein: S
gularity operating system and its communication mechasiare
presented in [4,11]. We have not found a discussion of cHanne
contract realizability in the papers on Singularity. Thadilarity
project focuses on checking conformance of the client amcese
processes to the channel contracts. However, as our reigmitsn-
strate, it is also necessary to analyze the contracts theesse

Our work builds on the earlier work on realizability of comve
sation protocols [3,5-7]. In fact the autonomous conditi@use
in this paper comes directly from this earlier work. Howeube
results are significantly different. The conversation peot model
used in [3,5-7] is a multi-party model (unlike the two partient
server model used by Singularity channel contracts). Duthéo
complexity of the multi-party interactions, the autonoraqurop-

Phase 1 & 2 Analysis Time

F‘;

-
\/

8 —#—Avg Phase 1 Time
500 o / —B—Avg Phase 2 Time
R - —— =__—:—M Trend

6 7 B 9 10111213 14151617 18 19 20 21 22 24 34 41

1600

1400

1200

/
/
I

Time (ms)
@
2
2

Contract State Count

Figure 17: Phase 1 and 2 Analysis Times

erty does not guarantee realizability. There are two otlogde
tions (called lossless join and synchronous compatiblesijr7])
that are required to guarantee realizability of multi-gaototocols.
However, checking these extra conditions can be exporamtize
worst case, whereas the realizability analysis presemtdiis pa-
per has linear complexity. To the best of our knowledge, dadiz-
ability result reported in this paper (i.e., the autonomoosdition
is a sufficient condition for the realizability of two-partietermin-
istic conversation protocols) has not been observed before

The realizability problem dates back to 1980’s (see [1, 4B, 1
where it was defined as whether a peer has a strategy to cope wit
the environment no matter how the environment decides teemov
The concept of realizability in this paper is rather difiereWe are
investigating realizability in a closed system and our dédin of
realizability requires that the implementation generabezctly the
same set of behaviors as specified by the contract. Theabdity
problem for Message Sequence Charts (MSC) [12] or MSC graphs
is similar to our definition [2, 16]. However, in the convetisa
model we use, a global behavior is modeled as a sequencedf sen
events. In many other modeling approaches, e.g., MSCs Seith
and receive events are captured. Such different modelirgppe-
tives lead to differences in the expressive power and initfiewty
of analysis and verification problems [7].

Finally, the work on session types [9, 10] also focuses ogispe
fication and analysis of interactions among processesoViges a
type theoretic approach where potential communicatiotblpras
are eliminated by the appropriate restrictions in the typstesm.
The Singularity project is also influenced by the work on s#ss
types. However, as we demonstrated in this paper, the tygiersy
in Sing# allows specification of contracts that can lead ttteck.

8. CONCLUSIONS

We showed that Singularity channel contracts can allow dead
locks. We presented a realizability condition that guazasatab-
sence of deadlocks. We built a tool that implements our zeali
ability analysis. We experimented with more than 90 Singiyla
contracts and identified two contracts with problems. Ouyreex
iments demonstrate that efficient analysis of Singularitytracts
is feasible. Perhaps, the most surprising outcome of oukgr
that Sing# programmers were following our realizabilityndiion
most of the time although this condition is not stated anyetie
the Singularity documentation. And, in two cases where fhitgd
to follow our realizability condition they specified contta that al-
low deadlocks. Finally, Singularity channel contracts ameexcel-
lent example of design for verification, where software iactured
in ways that enable effective verification. Without speeifion of

channel contracts the problems we identified would be bumigae
code and would be hard to extract and analyze.

9.
(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

[10]

[11]

[12]

13]

[14]

[15]

[16]

REFERENCES

M. Abadi, L. Lamport, and P. Wolper. Realizable and
unrealizable specifications of reactive system$1oc. of
16th Int. Collog. on Automata, Languages and Programming
volume 372 ofLNCS pages 1-17. Springer Verlag, 1989.
R. Alur, K. Etessami, and M. Yannakakis. Realizabilityda
verification of MSC graphs. IRroc. 28th Int. Collog. on
Automata, Languages, and Programmipgges 797-808,
2001.

T. Bultan, X. Fu, R. Hull, and J. Su. Conversation
specification: A new approach to design and analysis of
e-service composition. IRroc. 12th Int. World Wide Web
Conf, pages 403-410, May 2003.

M. Fahndrich, M. Aiken, C. Hawblitzel, O. Hodson, G. C.
Hunt, J. R. Larus, and S. Levi. Language support for fast and
reliable message-based communication in singularityros. |
Proc. 2006 EuroSys Conpages 177-190, 2006.

X. Fu, T. Bultan, and J. Su. Conversation protocols: A
formalism for specification and analysis of reactive
electronic servicesTheoretical Computer Science
328(1-2):19-37, November 2004.

X. Fu, T. Bultan, and J. Su. WSAT: A tool for formal
analysis of web services. Proc. 16th Int. Conf. on
Computer Aided Verificatigmppages 510-514, 2004.

X. Fu, T. Bultan, and J. Su. Synchronizability of
conversations among web servicBsEE Transactions on
Software Engineering31(12):1042—-1055, December 2005.
G. J. HolzmannThe SPIN Model Checker: Primer and
Reference ManuaAddison-Wesley, Boston, Massachusetts,
2003.

K. Honda, V. T. Vasconcelos, and M. Kubo. Language
primitives and type discipline for structured
communication-based programming.ath European
Symposium on Programming on Programming Languages
and Systems (ESOP’9%)ages 122-138, 1998.

K. Honda, N. Yoshida, and M. Carbone. Multiparty
asynchronous session typesHAroc. 35th Symp. on
Principles of Programming Languaggsages 273-284,
2008.

G. C. Hunt and J. R. Larus. Singularity: rethinking the
software stackOperating Systems Revigdi (2):37-49,
2007.

Message Sequence Chart (MSC). ITU-T, Geneva
Recommendation Z.120, 1994.

A. Pnueli and R. Rosner. On the synthesis of a reactive
module. InProc. 16th ACM Symp. Principles of
Programming Languagegages 179-190, 1989.

A. Pnueli and R. Rosner. On the synthesis of an
asynchronous reactive module.Pnoc. 16th Int. Collog. on
Automata, Languages, and Programslume 372 oLLNCS
pages 652-671, 1989.

Singularity design note 5 : Channel contracts. singtyladk
documentation (v1.1).

http://ww. codepl ex. coni si ngul ari ty, 2004.

S. Uchitel, J. Kramer, and J. Magee. Incremental e i
of scenario-based specifications and behavior models using
implied scenariosACM Transactions on Software
Engineering and Methodology3(1):37-85, 2004.

