
494 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. SE-10, NO. 5, SEPTEMBER 1984

ware Engineering Enviromnents, W. Munke, Ed. Amsterdam, T. Capers Jones received the B.A. degree in
The Netherlands: North-Holland, 1981. English from the University of Florida.

[221 W. B. Rauch-Hinden, "Reusable software," J. Syst. Software, He is Manager of the Application Management
vol. 2, pp. 78-92, Feb. 1983. Practice at the consulting firm Nolan, Norton,

[23] W. Barden, Business Programming Applications, Tandy Radio and Company, Lexington, MA. He was pre-
Shack, Ft. Worth, TX, 1982. viously Assistant Director of Programming

[24] X. T. Bui, Executive Planning with BASIC, Sybex Inc., Berkeley, Technology at the ITT Programming Technology
CA, 1982. Center, Stratford, CT, and his background in-

[25] R. L. Nolan, "Managing the crises in data processing," Harvard cludes 12 years of research and managerial
Business Rev., pp. 115-126, Mar.-Apr. 1979. assignments with IBM.

An Essay on Software Reuse

THOMAS A. STANDISH

Abstract-This paper explores software reuse. It discusses briefly fast enough to close this demand-supply gap, an energetic
some economic incentives for developing effective software reuse tech- search has begun to identify ways to improve programmer pro-
nology and notes that different kinds of software reuse, such as direct ductivity. Improving productivity is a key focus of the new
use without modification and reuse of abstract software modules after Software Iniitve4 p12],casiwell a bei one of the fou
refinement, have different technological implications. Softwue Initiative [41, [12], as well as being one of the four

It sketches some problem areas to be addressed if we are to achieve key areas of priority work for the new Micro Electronics and
the goal of devising practical software reuse systems. These include in- Computer Technology Corporation, a joint venture of 15 U.S.
formation retrieval problems and fnding effective methods to aid us in mainframe and semiconductor manufacturers.
understanding how programs work.
There is a philosophical epilogue which stresses the importance of Since economic analysis [1] indicates that the cost of soft-

having realistic expectations about the benefits of software reuse. ware is an exponential function of software size, halving the
size of the software which must be built muchmore than halves

index Tenns-Software factories, software productivity, software reuse. the cost of building it. Software reuse has thus become a key-
stone in many current efforts to improve productivity. One
impressive way to lower the cost of building software is to pay

1. ECONOMIC PROPELLANTS either nothing at all or a small cost for retrieval (and perhaps
T HE quest for viable methods of software reuse has some instantiation) by reusing what has been previously built. Ap-

Tstrong economic propellants. Software demand is rising plying to software reuse what Bertrand Russell once said about
sharply on what appears to be an exponential growth curve, the axiomatic method, we might say, "Software reuse has the
and the shortfall between supply and demand, currently mea- same advantage as theft over honest toil. "
sured in terms of 50 000-100 000 programmers,may rise to 1.2
million by 1990 if remedial measures are not taken [2], [12]. AND HEALTHY
Since the supply of capable programmers will not rise nearly

Recently, there has been much fresh curiosity about soft-
Manuscript received August 1, 1983; revised May 14, 1984. The ware reuse. An often-heard observation is that software reuse

Irvine Programming Environment Project is supported by DARPA is an idea that has been around for a long time but which has
under Contract N00039-83-C-0567.
The author is with the Programming Environment Project, Depart- never flourished. For example, there is puzzlement that

ment of Computer Science, University of California, Irvine, CA 92717. Mcllroy's notion [8] of a mass-produced software components

0098-5589/84/0900-0494$01.00 O 1984 IEEE

STANDISH: SOFTWARE REUSE 495

industry, presented at the NATO Software Engineering meeting Is it only the case, then, that we have failed to master the
in Garmish in 1968, has not come into existence as Mcllroy mechanization and practical application of deriving concrete
envisaged. In searching for understanding as to why this idea instances from representations of abstactions? Well, here, too,
(or any similar idea involving software publication industries) there is limited success in the form of software application
has not flourished, one often hears the speculation that in- generators (e.g., for business forms management and limited
dividual concrete programs are too specialized to be reused in database systems) and macro-generators. In some advanced
most cases-they contain too many detailed representational research laboratories, such as Harvard's, extensive program trans-
choices to be adaptable to new circumstances of potential use. formation systems have been developed for capturing concise
This leads to statements such as the one R. M. Balzer made at expressions of software abstractions and transforming them
the ITT Workshop on Reusability in Programming, that "code into concrete instances [31, [51.
is not reusable," and to the speculation that what is needed is The successful practice of software reuse appears to help
an effective method for expressing software abstractions and considerably in the teaching of certain kinds of computer
for generating particular instances by transformation or re- science courses. For example, in a compiler construction lab
finement, suited to many varying concrete settings of use. course at Irvine, we introduce a compiler, called SmallGol,

Is it true that "code is not reusable?" Looking about, we study it for three weeks intensively to understand in detail
can observe limited cases where direct reuse of software occurs how it works, modify it to handle extended classes of state-
without modification: libraries of mathematical subroutines ments and expressions, and then start from scratch to write
(IMSL), operating system service calls (e.g., for opening files, a completely new compiler for a small portion of Ada2 em-
terminal independent I/O), small granule capabilities as in Unix' phasizing reuse of the parts of the SmallGol compiler. Reuse
and suites of large granule tools as in Toolpack [10] . percentages, such as 68 percent,3 are not uncommon and bear
These successful examples span a range of granularities from out the hypothesis that successful reuse of software compo-

subcomponents (as in Unix) to components (as in mathematical nents enables students to construct systems at much higher
libraries) to self-contained tools (such as EMACS). Sometimes levels of system organization than would be possible if they
large granule tools combine effectively with each other after a had to write everything from scratch. Prof. Ken Bowles reports
modest amount of customization or extension by nonspecialists, a similar success at UCSD using similar techniques which he
as in calling a complete text editor (for example, EMACS) as has called, "the case method."
part of an interactive language interpretation system, and There appear to be fairly strong reasons for these successes.
making EMACS knowledgeable about special templates in the If students waste time in a compiler construction class rewriting
language at hand [13]. low-level routines to search symbol tables, and translate se-
Despite these limited successes, it is certainly the case that quences of digit characters into integers, experience indicates

some software components are too specialized and concrete to that, short of heroic measures, they do not have time to finish
be reusable. A common example of this is illustrated in the building even an unambitious compiler. In fact, we can make
way we choose to reuse abstractions from data structures books. a stronger observation-unless we take advantage of software
For example, suppose we are writing a compiler and we decide reuse methods, it is nearly impossible4 to teach a meaningful
to use a hash table to represent a symbol table. We might select compiler construction class in one ten-week quarter.
a book, such as Knuth, and we might choose to use, say double At normal rates of production, professional compiler writers
hashing with pass bits as a representation technique. write 1500 lines of documented debugged code per year. Thus,
Data structures books present such algorithms abstractly and in one-fifth of a year on one-quarter time, students could be

concisely, but to make use of them, we must supply special expected to produce 75 lines at the same rate. Unless strong
choices for things such as the table size, the space of keys, the use is made of software generators (e.g., parser generators, lex-
particular hasling functions, and the format of the table entries. ical analyzer generators) or unless software components (table
The abstract algorithm is thus refined into a concrete special- look-up routines, data conversion routines) are reused, it is
ized instance, and is usually expressed in a convenient imple- unlikely that students will be able to produce complete working
mentation language. However, there is a scant probability (small) compilers in one quarter. By taking advantage of the
that we could ever reuse the concrete instance directly, because leverage afforded by software reuse, experience indicates we
the new circumstances of use would probably require a com- can succeed dramatically in such software construction classes.
pletely new choice of concrete details (table size, hashing func- (In the class cited, the measured rates of production averaged
tion, table entries, keys, etc.). Thus, it is the abstraction and 2175 lines per person-month for well-documented debugged
not the concrete instance that gets reutilized. One view of the
teaching of computer science is that it involves identifying and 2Ada is a registered trademark of the U.S. DoD (AJPO).
presenting useful abstractions-those which, at best, will be 3The metric (applied to this and other examples in this essay) for

intellectaltoolsserviceabe for a ifetime.assessing the percentage of reuse is the same as that used in one of theintellectaltoolsserviceabe for a ifetime.Japanese software factories-if a line of the source program is reused
Software reuse is alive and well in the form of teaching and without change, it counts as a reused line; if it is modified in any way,

application of reusable software abstractions-the data struc- even slightly, it counts as i-reused and 2 -new; and if it is freshly
tures and algorithms books are full of them, and the commerce comlposed, it counts as a new line.
in books and courses is flourishing. O0n one memorable occasion, not only were students unable to pro-duce working compilers starting from scratch, but they vented their

frustration by smashing in the windshield of the instructor X's car and1Unix is a trademark of Bell Labs. proulyJ1 wea>ringr "T sulrvived X" buttons atradution.;

496 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. SE-10, NO. 5, SEPTEMBER 1984

code that was tested in live demonstrations for the final exami- tible to parametric variation and refinement, an effective initial
nation-and this rate of production matches that of the Japanese solution to this problem could be found.
Software Factories [7], [9].) 2) Software Generators: We need a systematic way to gen-
As another successful application of software reuse, we built erate concrete instances of abstract software modules by sub-

a program to generate color slides on a color CRT. This was stitution of specific parameters. More generally, we need to
an exercise in "rapid prototyping" which relied heavily on soft- master program transformations that change data and algo-
ware reuse in order to make the prototyping truly rapid. We rithmic representations as we move across layers of the refine-
speculate that the achievement of a 62 percent software reuse ment hierarchy. We believe three developments indicate prom-
level helped to give the measured rate of software production ise: Ada generics, conventional macro-generation [11], and
a 19.2 advantage over nominal rates of software productivity the ECL program transformation system [3].
(using the software producitivity estimation techniques given 3) Component Composition Paradigms: What are the
in [1]). The slide maker was compiled in Ada, exported to methods by which we compose components when we build
TRW over a computer network, and used by TRW to make systems? Nested function calling, Unix pipes and redirected
slides for a presentation at NCC. In Japanese software fac- 1/0, and shared interface designs (as in Ada package specs)
tories, reuse factors of 85 percent have been quoted [9], as coupled with information hiding (for firewalling private in-
have rates of software production more than eight times formation against name clashing and unauthorized use) provide
the comparable domestic rates. McNamara stresses that no tech- three examples that could be used as a basis of a took kit of
nological "breakthroughs" have been necessary to achieve these general methods. Is more needed? For a start, we doubt it.
improvements-only ordinary techniques such as key-word 4) Program Understanding: Before we can reuse certain
searching of software module abstracts and writing modules kinds of software (i.e., the kinds we have to modify or upgrade),
to be table-driven and reasonably parametrized. we must understand how the software works. Already, if

maintenance costs 70-90 percent of the life cycle, and under-
III. PROBLEMS, ISSUES, AND APPROACHES standing occupies 50-90 percent of maintenance cost [6],

As the reader may have gathered, we believe a case can be program understanding time may be the dominant time in the
made (if somewhat anecdotally) that a number of valuable entire software life cycle and thus the dominant cost. So a

software reuse techniques are known today and that, in limited big sleeping issue may be the problem of program under-

cases, they appear to work to advantage. standing-how do we make it easy and cheap for people to

We believe that while breakthroughs and revolutionary new understand how programs work? Will it be the case that the

ways of doing business may be helpful, convincing existence dominant cost in those kinds of software reuse which do not

proofs-such as the Japanese software factories [7], [9]- involve reusing modules as black boxes will be the cost of pro-
are at hand,which indicate that a great deal can be accomplished gram understanding? If so, we are led, in turn, to ask-how do

by integrating what we know how to do today and by accom- we create effective software explanations?
plishing technology transfer of currently working, successful 5) Benefits Analysis: We need to do our homework on what

software reuse paradigms into production-engineered systems kinds of benefits we can expect to achieve from mastering vari-
of practical use. "Organizational breakthroughs" may well ous sorts of software reuse techniques, such as direct reuse of
be more imporant than "technological breakthroughs" if this concrete modules, reuse after refinement, and reuse after mod-
is to be achieved. ification. How much of a new system can we expect to synthe-

It will probably not be music to the ears of an audience, size by these different forms of reuse? And, for different
devoted to advancing the frontiers of technology, to hear that families of systems, what percentages of them could be candi-
having better technology might well be less critical to success dates for subsequent reuse? What shall the granularity of reuse
than convincing management that organizational breakthroughs be? Here, it seems a great deal of insight could be gained from
and focused investment are the key missing ingredients needed collecting and analyzing data derived from examples where
for success. Yet, when technology, through successful efforts software reuse techniques have been successfully applied in
of technologists, has advanced far enough to provide a success- practice [7], [9]. We should expect payoff in narrowly focused
ful basis for a solution and the missing necessary pieces for a application areas where we recreate slightly customized versions
solution are political and managerial, an intelligent technologist of a single species of system over and over from large, well-
might decide to back political and organizational initiatives. understood parts libraries (as is the case in at least one Japanese
Thomas Edison is an example of a technologist who was smart software factory). We would predict low payoff from ill-
enough to understand this. understood areas that have not undergone much engineering
Having set this context, the following is a brief list of problem evolution (see Part IV).

areas that we believe could lead to an improved technology of
software reuse, if addressed successfully: IV. PHILOSOPHICAL EPILOGUE
1) Information Retrieval: We must learn how to organize, We ought not to have overinflated or underinflated expecta-

index, describe, and reference software components effectively. tions about software reuse. As an engineering discipline ma-
We believe that a system of "software component folders" could tures, its terminology, methods, composition paradigms, and
be organized and indexed by conventional techniques for in- basis of components undergo expansion and standardization.
dexing papers in the computer science literature, and that by Compare computer graphics as it was 30 years ago to the way
having each component in a software library in a form suscep- it is today. Today we have an impressive vocabulary of con-

STANDISH: SOFTWARE REUSE 497

cepts which are useful for synthesizing artifacts: windowing, for program refinement," Center Res. Comput. Technol., Harvard
clipping, inking, rubber-banding, latching, menuing, perspec- Univ., Cambridge, MA, TR 5-79, Aug. 1979.
tive transformations, shading, hidden-line elimination, and so [41 L. E. Druffel, S. T. Redwine, Jr., and W. E. Riddle,"i6he STARSprogram: Overview and rationale," Computer, vol. 16,Nov. 1983.
on. There are large numbers of algorithms, representations, [51 The ECL Programmer's Manual, Center Res. Comput. Technol.,
techniques, hardware devices, concepts, and abstractions to Harvard Univ., Cambridge, MA, TR 32-74, Dec. 1974.
support engineering activities in computer graphics. [6°B. P. Lientz, E. B. Swanson, and G. E. Tompkins, "Characteristicsof application software maintenance," Commun. Ass. Comput.Only after a field of engineering has undergone considerable Mach., vol. 21, June 1978.
evolution and considerable traffic in applications can we expect [71 Y. Matsumoto et al., "SWB sytem: A software factory," in Soft-
the basis for a useful practice of software componentry to ware Engineering Environments, H. Hunke, Ed. Amsterdam,

the basis for a ~~~~~~~~~~~TheNetherlands: North-Holland, 1981, pp. 305-318.
emerge, because only after the reusable abstractions have been [81 M. D. Mcllroy, "Mass produced software components," in Soft-
discovered, standardized, and taught widely is there a basis ware Engineering, P. Naur and B. Randell, Eds. Garmisch,
for mental training required for effective naming, classifica- Germany: NATO Sci. Committee, Jan. 1969, pp. 138-155.

191 D. McNamara, "Japanese software factories," presented attion, and reuse. For effective reuse, it seems axiomatic that Comput. Sci. CoUoq., Univ. California, Irvine, May 1983.
trained people will have to know about the existence of re- [10] L. J. Osterweil, "Toolpack-An experimental software develop-
usable components, about what they are good for, and about ment environment research project," IEEE Trans. SoftwareEng., vol. SE-9, Nov. 1983.
how to use them in applications. If, for example, this is so for [111 D. A. Smith, "Rapid software prototyping," Ph.D dissertation,
electronics hardware components, should it be any less so for Univ. California, Irvine, May 1982.
software components? 1121 "Software technology for adaptable, reliable systems (STARS)program strategy," Dep. Defense, Nat. Tech. Inform. Service,The mental investment represented by this sort of vast engi- no. AD A128981, Mar. 1983.
neering edifice is staggering and the costs of exploration needed [131 S. H. Willson, "Experimental template-driven Ada editor based
to produce it are even more staggering. We should not expect on EMACS," Program. Environ. Project, Dep. Comput. Sci.,
useful arts of software reuse to emerge in arbitrary subfields,
and least of all in uncultivated ones (e.g., databases supporting
knowledge-based systems). Success, if it is attainable at all,
might well be attained first in subfields where we have a highly Thomas A. Standish (M'83) received the B.S.
developed art of system building complete with a mature in mathematics (magna cum laude) from Yale
engineering substrate, and in areas where we will have a con- University, New Haven, CT, in 1962, and theengineering substrate,and in areas ~~~~~~Ph.D.in computer science from Carnegie Insti-
tinuing demand for nearly identical special systems that will tute of Technology, Pittsburgh, PA, in 1967.
have to be created anew for each new computer system we He is a Professor of Computer Science at the
build (e.g., assemblers, business data processing interfaces, University of California, Irvine. He is alsoChairman of the Board of the Irvine Computerlimited kinds of database systems, etc.). Science Corporation. Previously, he was Chair-

man of the Department of Computer Science,
REFERENCES University of California, Irvine. Before that,he taught at Harvard and Carnegie-Mellon, and was a Senior Scientist

[1] B. W. Boehm, Software Engineering Economics. Englewood at Bolt Beranek and Newman, Inc. He also served as Editor-in-Chief
Cliffs, NJ: Prentice-Hail, 1981. of the ACM Monograph Series and as Programming Languages Editor

[2] B. W. Boehm and T. A. Standish, "Software technology in the for Communications of the ACM. In 1980, he published the book Data
1990s: Using an evolutionary paradigm," Computer, vol. 16, Structure Techniques.
Nov. 1983. Dr. Standish is on the IEEE Technical Committee on Software

[3] T. E. Cheatham, J. A. Townley, and G. H. HoUloway, "A system Engineering.

