
Twin — A Design Pattern for Modeling

Multiple Inheritance

Hanspeter Mössenböck

University of Linz, Institute of Practical Computer Science, A-4040 Linz
moessenboeck@ssw.uni-linz.ac.at

Abstract. We introduce an object-oriented design pattern called Twin
that allows us to model multiple inheritance in programming languages
that do not support this feature (e.g. Java, Modula-3, Oberon-2). The
pattern avoids many of the problems of multiple inheritance while keep-
ing most of its benefits. The structure of this paper corresponds to the
form of the design pattern catalogue in [GHJV95].

1 Motivation

Design patterns are schematic standard solutions to recurring software design
problems. They encapsulate a designer’s experience and makes it reusable in
similar contexts. Recently, a great number of design patterns has been discovered
and published ([GHJV95], [Pree95], [BMRSS96]). Some of them are directly
supported in a programming language (e.g. the Prototype pattern in Self or the
Iterator pattern CLU), some are not. In this paper we describe a design pattern,
which allows a programmer to simulate multiple inheritance in languages which
do not support this feature directly.

Multiple inheritance allows one to inherit data and code from more than one
base class. It is a controversial feature that is claimed to be indispensable by
some programmers, but also blamed for problems by others, since it can lead to
name clashes, complexity and inefficiency. In most cases, software architectures
become cleaner and simpler when multiple inheritance is avoided, but there are
also situations where this feature is really needed. If one is programming in a
language that does not support multiple inheritance (e.g. in Java, Modula-3 oder
Oberon-2), but if one really needs this feature, one has to find a work-around.
The Twin pattern — introduced in this paper — provides a standard solution
for such cases. It gives one most of the benefits of multiple inheritance while
avoiding many of its problems.

The rest of this paper is structured according to the pattern catalogue in
[GHJV95] so that the Twin pattern could in principle be incorporated into this
catalogue.

1.1 Example

As a motivating example for a situation that requires multiple inheritance, con-
sider a computer ball game consisting of active and passive game objects. The

D. Bjørner, M. Broy, A. Zamulin (Eds.): PSI’99, LNCS 1755, pp. 358–369, 2000.
c© Springer-Verlag Berlin Heidelberg 2000

Twin — A Design Pattern for Modeling Multiple Inheritance 359

active objects are balls that move across the screen at a certain speed. The
passive objects are paddles, walls and other obstacles that are either fixed at a
certain screen position or can be moved under the control of the user.

The design of such a game is shown in Fig. 1. All game items (paddles,
walls, balls, etc.) are derived from a common base class GameItem from which
they inherit methods for drawing or collision checking. Methods such as draw()
and intersects() are abstract and have to be refined in subclasses. check() is a
template method, i.e. it consists of calls to other abstract methods that must be
implemented by concrete game item classes later. It tests if an item intersects
with some other and calls the other item’s collideWith() method in that case. In
addition to being game items, active objects (i.e. balls) are also derived from class
Thread. All threads are controlled by a scheduler using preemptive multitasking.

GameItem

draw()
bool intersects(otherItem)
collideWith(otherItem)
click()
check()

Paddle

draw()
…

Wall

draw()
…

Ball

draw()
move()
click()
…
run()

Thread

run()
suspend()
resume()
sleep()

for (all items x)
 if (intersects(x))
 collideWith(x);

if (suspended) resume();
else suspend();

while (true) {
 draw(); move(); draw();
}

Fig. 1. Class hierarchy of a computer ball game

The body of a ball thread is implemented in its run() method. When a ball
thread is running, it repeatedly moves and draws the ball. If the user clicks on
a ball, the ball sends itself a suspend() message to stop its movement. Clicking
on the ball again sends a resume() message to make the ball moving again.

The important thing about this example is that balls are both game items
and threads (i.e. they are compatible with both). They can be linked into a list
of game items, for example, so that they can be sent draw() and intersects()
messages. But they can also be linked into a list of threads from which the
scheduler selects the next thread to run. Thus, balls have to be compatible with
both base classes. This is a typical case where multiple inheritance is useful.

Languages like Java don’t support multiple inheritance, so how can we im-
plement this design in Java? In Java, a class can extend only one base class but
it can implement several interfaces. Let’s see, if we can get along with multiple

360 Hanspeter Mössenböck

interface inheritance here. Ball could extend Thread and thus inherit the code of
suspend() and resume(). However, it is not possible to treat GameItem just as an
interface because GameItem is not fully abstract. It has a method check(), which
contains code. Ball would like to inherit this code from GameItem and should
therefore extend it as well. Thus Ball really has to extend two base classes.

This is the place where the Twin pattern comes in. The basic idea is as follows:
Instead of having a single class Ball that is derived from both GameItem and
Thread, we have two separate classes BallItem and BallThread, which are derived
from GameItem and Thread, respectively (Fig. 2). BallItem and BallThread are
closely coupled via fields so that we can view them as a Twin object having two
ends: The BallItem end is compatible with GameItem and can be linked into a
list of game items; the BallThread end is compatible with Thread and can be
linked into a list of threads.

GameItem

draw()
…
click()
check()

BallItem

draw()
move()
click()
…

Thread

run()
suspend()
resume()
sleep()

if (suspended)
 twin.resume();
else
 twin.suspend();

while (true) {
 twin.draw();
 twin.move();
 twin.draw();
}

BallThread

run()
twin

twin

twin object

Fig. 2. The class Ball from Fig.1 was split into two classes, which make up a
twin object

Twin objects are always created in pairs. When the scheduler activates a
BallThread object by calling its method run(), the object moves the ball by
sending its twin the messages move() and draw(). On the other hand, when the
user clicks on a ball with the mouse, the BallItem object reacts to the click and
sends its twin the messages suspend() and resume() as appropriate.

Using only single inheritance, we have obtained most of the benefits of mul-
tiple inheritance: Active game objects inherit code from both GameItem and
Thread. They are also compatible with both, i.e. they can be treated both as
game items (draw, click) and as threads (run). As a pleasant side effect, we
have avoided a major problem of multiple inheritance, namely name clashes. If
GameItem and Thread had fields or methods with the same name, they would

Twin — A Design Pattern for Modeling Multiple Inheritance 361

be inherited by BallItem and BallThread independently. No name clash would
occur. Similarly, if GameItem and Thread had a common base class B, the fields
and methods of B would be handed down to BallItem and to BallThread sepa-
rately — again without name clashes.

2 Applicability

The Twin pattern can be used

• to simulate multiple inheritance in a language that does not support this
feature.

• to avoid certain problems of multiple inheritance such as name clashes.

3 Structure

The typical structure of multiple inheritance is described in Fig.3.

Parent1
v1

M1()

Parent2
v2

M2()

Child
v3

M1()
M2()
M3()

Fig. 3. Typical structure of multiple inheritance

It can be replaced by the Twin pattern structure described in Fig.4.

4 Participants

Parent1 (GameItem) and Parent2 (Thread)

• The classes from which you want to inherit.

Child1 (BallItem) and Child2 (BallThread)

• The subclasses of Parent1 and Parent2. They are mutually linked via fields.
Each subclass may override methods inherited from its parent. New methods
and fields are usually declared just in one of the subclasses (e.g. in Child1).

362 Hanspeter Mössenböck

Parent1

v1

M1()

Parent2

v2

M2()

Child1

v3

M1()
M3()

Child2

M2()
twin

twin

Fig. 4. Typical structure of the Twin pattern

5 Collaborations

• Every child class is responsible for the protocol inherited from its parent.
It handles messages from this protocol and forwards other messages to its
partner class.

• Clients of the twin pattern reference one of the twin objects directly (e.g.
ballItem) and the other via its twin field (e.g. ballItem.twin).

• Clients that rely on the protocols of Parent1 or Parent2 communicate with
objects of the respective child class (Child1 or Child2).

6 Consequences

Although the Twin pattern is able to simulate multiple inheritance, it is not
identical to it. There are several problems that one has to be aware of:

1. Subclassing the Twin pattern. If the twin pattern should again be subclassed,
it is often sufficient to subclass just one of the partners, for example Child1.
In order to pass the interface of both partner classes down to the subclass, it
is convenient to collect the methods of both partners in one class. One can
add the methods of Child2 also to Child1 and let them forward requests to
the other partner (Fig.5).
This solution has the problem that Sub is only compatible with Child1 but
not with Child2. If one wants to make the subclass compatible with both
Child1 and Child2 one has to model it according to the Twin pattern again
(Fig.6).

Twin — A Design Pattern for Modeling Multiple Inheritance 363

Parent1

v1

M1()

Parent2

v2

M2()

Child1

v3

M1()
M2()
M3()

Child2

M2()
twin

twin

Sub

M1()
M2()

twin.M2()

Fig. 5. Subclassing a twin class. Child1.M2() forwards the message to
Child2.M2()

Parent1

v1

M1()

Parent2

v2

M2()

Child1

v3

M1()
M3()

Child2

M2()twin

twin

GrandChild1

M1()

GrandChild2

M2()

gtwin
gtwin

Fig. 6. The subclass of Child1 and Child2 is again a Twin class

364 Hanspeter Mössenböck

2. More than two parent classes. The Twin pattern can be extended to more
than two parent classes in a straightforward way. For every parent class there
must be a child class. All child classes have to be mutually linked via fields
(Fig.7).

Parent1

v1

M1()

Parent2

v2

M2()

Child1

v4

M1()
M4()

Child2

M2()

tw1

tw3

Parent2

v3

M3()

Child3

M3()
tw2

tw1

tw2

tw3

Fig. 7. A Twin class derived from three parent classes

Although this is considerably more complex than multiple inheritance, it is
rare that a class inherits from more than two parent classes.

7 Implementation

The following issues should be considered when implementing the Twin pattern:

1. Data abstraction. The partners of a twin class have to cooperate closely.
They probably have to access each others’ private fields and methods. Most
languages provide features to do that, i.e. to let related classes see more about
each other than foreign classes. In Java, one can put the partner classes into
a common package and implement the private fields and methods with the
package visibility attribute. In Modula-3 and Oberon one can put the partner
classes into the same module so that they have unrestricted access to each
others’ components.

2. Efficiency. The Twin pattern replaces inheritance relationships by composi-
tion. This requires forwarding of messages, which is less efficient than inher-
itance. However, multiple inheritance is anyway slightly less efficient than
single inheritance [Str89] so that the additional run time costs of the Twin
pattern are not a major problem.

Twin — A Design Pattern for Modeling Multiple Inheritance 365

8 Sample Code

We sketch the implementation of the motivating example (a computer game
board with moving balls) in Java. The board is represented by a class Game-
Board. It has a certain width and height and a reference to a list of game items.

public class Gameboard extends Canvas {
public int width, height;
public GameItem firstItem;
...

}

The game items are derived from an abstract class GameItem. Every item
has a reference to the game board, a position on this board and a reference to
the next game item. It has abstract methods to draw itself, to react on mouse
clicks, to check whether it intersects with some other game item and to take
measures for a collision with other game items.

public abstract class GameItem {
Gameboard board;
int posX, posY;
GameItem next;
public abstract void draw();
public abstract void click (MouseEvent e);
public abstract boolean intersects (GameItem other);
public abstract void collideWith (GameItem other);
public void check() { ... }

}

The method check() is a template method, which checks if this object inter-
sects with any other object on the board. If so, it does whatever it has to do for
a collision.

public void check() {
GameItem x;
for (x = board.firstItem; x != null; x = x.next)

if (intersects(x)) collideWith(x);
}

Balls are twin objects derived from GameItem and Thread. As shown in
Fig. 2 we implement the twin group as BallItem (a subclass of GameItem) and
BallThread (a subclass of Thread). Ball items move at a certain speed (dx, dy)
and have to override the inherited methods draw, click, intersects and collide-
With.

public class BallItem extends GameItem {
BallThread twin;

366 Hanspeter Mössenböck

int radius;
int dx, dy;
boolean suspended;
public void draw() {

board.getGraphics().drawOval(posX-radius,
posY-radius, 2*radius, 2*radius); }

public void move() { posX += dx; posY += dy; }
public void click() {...}
public boolean intersects (GameItem other) {...}
public void collideWith (GameItem other) {...}

}

In order to simplify things, we assume that balls can only collide with walls,
which are another kind of game items. The intersects method of a BallItem can
then be implemented as

public boolean intersects (GameItem other) {
if (other instanceof Wall)

return posX - radius <= other.posX
&& other.posX <= posX + radius

|| posY - radius <= other.posY
&& other.posY <= posY + radius;

else return false;
}

A collision with a wall changes the direction of the ball, which can be imple-
mented as

public void collideWith (GameItem other) {
Wall wall = (Wall) other;
if (wall.isVertical) dx = - dx; else dy = - dy;

}

When the user clicks on a moving ball it stops; when he clicks on a stopped
ball it starts to move again. This is implemented by suspending and resuming
the corresponding ball thread (the twin object).

public void click() {
if (suspended) twin.resume(); else twin.suspend();
suspended = ! suspended;

}

The class BallThread is derived from the standard class java.lang.Thread.
It has a reference to its twin class BallItem. The only method that has to be
implemented is run(). The implementation of other methods such as suspend()
and resume() is inherited from Thread.

Twin — A Design Pattern for Modeling Multiple Inheritance 367

public class BallThread extends Thread {
BallItem twin;
public void run() {

while (true) {
twin.draw(); /*erase*/ twin.move(); twin.draw();

}
}

}

When a new ball is needed, the program has to create both a BallItem and
a BallThread object and link them together, for example:

public static BallItem newBall
(int posX, int posY, int radius) {//method of GameBoard
BallItem ballItem = new BallItem(posX, posY, radius);
BallThread ballThread = new BallThread();
ballItem.twin = ballThread;
ballThread.twin = ballItem;
return ballItem;

}

The returned ball item can be linked into the list of game items in the game
board. The corresponding ball thread can be started to make the ball move.

9 Known Uses

The motivating example of a ball game (Section 1) was implemented as a teach-
ing exercise in Oberon-2, a language that does not support multiple inheritance.
The Oberon system uses cooperative multitasking. It maintains a list of user pro-
cesses that are activated whenever the system is idle. A ball is a special instance
of a process and at the same time a game object.

Another example can be found in the context of Java applets. Applets are
active objects that live on Web pages and react on user input such as mouse
clicks. When a user clicks on an applet, the applet notifies all registered mouse
listeners to react on the event. If an applet wants to react on the click itself,
it has to implement the MouseListener interface, so that it can be registered
as an appropriate listener with itself. It must also extend the class Applet. The
following code shows the declaration of a class MyApplet:

class MyApplet extends Applet implements MouseListener{
...

}

The MouseListener interface (a standard interface of the Java libraries) spec-
ifies 5 methods that have to be implemented in MyApplet:

368 Hanspeter Mössenböck

interface MouseListener extends EventListener {
public void mousePressed (MouseEvent event);
public void mouseClicked (MouseEvent event);
public void mouseReleased (MouseEvent event);
public void mouseEntered (MouseEvent event);
public void mouseExited (MouseEvent event);

}
Some of these methods are often identical in different listener implementa-

tions. For example, several listeners change the shape of the cursor in the same
way when it enters or exits the applet area on the screen. Therefore, we would like
to have a prefabricated mouse listener class (StdMouseListener), which already
provides standard implementations for the methods mouseEntered and mouse-
Exited. Other listeners could then inherit these standard implementations.

We are now in a situation where we would like to inherit code from two
classes, namely from Applet and StdMouseListener, but this is not possible in
Java. We can only inherit from one class. We can, however, apply the Twin
pattern, which results in the following architecture (Fig.8).

Applet

resize()
paint()
…

StdMouseListener

mouseEntered()
mouseExited()
mousePressed()
mouseClicked()
mouseReleased()

MyApplet

paint()

MyAppletListener

mousePressed()
mouseClicked()
mouseReleased()

applet

listener

Fig. 8. A twin applet that inherits code both from Applet and from StdMouseLis-
tener

MyApplet inherits code from Applet; MyAppletListener inherits code from
StdMouseListener. A MyAppletListener object will be registered as a mouse
listener for MyApplet. When it is notified about a mouse click it accesses its
applet to perform an appropriate action.

In [CaW98] a similar solution is presented using inner classes. MyAppletLis-
tener is implemented there as an inner class of MyApplet. This allows MyAp-
pletListener to access all private instance variables of MyApplet. No explicit link
between the classes is necessary. However, this solution is asymmetric. MyApplet
cannot access the private instance variables of MyAppletListener.

Twin — A Design Pattern for Modeling Multiple Inheritance 369

10 Related Patterns

The Twin pattern is related to the Adapter pattern, especially to the Two-
Way-Adapter described in [GHJV95], which is recommended when two different
clients need to view an object differently. However, the Two-Way-Adapter is
implemented with multiple inheritance while the Twin avoids this feature.

Acknowledgements

The technique described in this paper was discovered by Robert Griesemer in the
implementation of a game program in Oberon. It was also described — although
not as a design pattern — in [Tem93] and [Moe93].

References

[BMRSS96] Buschmann F., Meunier R., Rohnert H., Sommerlad P., Stal M.: Pattern-
oriented Software Architecture: A System of Patterns. Wiley 1996.

[CaW98] Campione M., Walrath K.: The Java Tutorial, 2nd edition, Addison-Wesley,
1998.

[GHJV95] Gamma E., Helm R., Johnson R., Vlissides J.: Design Patterns — Elements
of Reusable Object-Oriented Software. Addison-Wesley 1995.

[Moe93] Mössenböck H.: Objektorientierte Programmierung in Oberon-2. Springer-
Verlag 1993.

[Pree95] Pree W.: Design Patterns for Object-Oriented Software Development. Addi-
son-Wesley 1995.

[Str89] Stroustrup B.: Multiple Inheritance for C++. Proceedings EUUG Spring Con-
ference, Helsinki, May 1989.

[Tem93] Templ J.: A Systematic Approach to Multiple Inheritance Implementation.
SIGPLAN Notices 28 (4): 61-66

	Motivation
	Example

	Applicability
	Structure
	Participants
	Collaborations
	Consequences
	Implementation
	Sample Code
	Known Uses
	Related Patterns

