
Coco/R – A Generator for Fast Compiler Front-Ends

H. Mössenböck, ETH Zürich
Technical Report

Abstract

Formal compiler descriptions serve two purposes: (1) they can be used as a reference document which
specifies the syntax and the semantics of a language, and (2) they provide a convenient notation from
which efficient compilers can be generated. Compiler generating systems put emphasis on either the one
or the other of these aspects. The system described in this report mainly concentrates on the second goal.
We show that it is possible to generate compilers that are as efficient as hand-coded and carefully
optimized production-quality compilers. Our system generates recursive descent parsers with a simple
error-handling mechanism and scanners with a special buffering scheme. Almost as important as efficiency
is the simplicity and adequacy of the system. Programmers are not willing to use a tool if it does not come in
handy in their work, if it uses a cryptic notation or a multitude of options and special cases. The tool should
make their work easier without limiting their flexibility. We used our system to generate an Oberon compiler
that is even faster than the standard Oberon compiler used at ETH.

Contents

1. Introduction

2. The Compiler Description Language Cocol/R
2.1 Overall Structure
2.2 Scanner Specification
2.3 Parser Specification

3. Using Coco/R to Generate a Compiler
3.1 Scanner Interface
3.2 Parser Interface
3.3 Grammar Tests

4. Hints for Advanced Users of Coco/R

5. Implementation
5.1 Scanner Generation
5.2 Parser Generation
5.3 Error Recovery

6. Measurements

7. Summary

Appendix A  Cocol/R Grammar
Appendix B  Sample Attributed Grammar in Cocol/R



2

1. Introduction

Coco/R is a program that takes an augmented EBNF grammar of a language and generates a recursive
descent parser and a scanner for this language. The programmer has to supply a main module that calls the
parser, as well as semantic modules that are called from within the grammar (e.g., a symbol table handler
and a code generator). 

Parser

Main

Scanner

Semantic modules

Coco

Compiler
description

The input language of Coco/R (Cocol/R) is based on attributed grammars. Attributed grammars were
introduced by Knuth [Knu68] as a formalism to specify the semantics of context-free languages. In their
original form they are static descriptions. They describe dependencies between attributes of symbols
without giving an order in which the dependencies are to be evaluated. Many compiler generators stick to
this notation [GaGi84, KHZ82, Räi83]. For the implementation of efficient compilers, however, it may be
better to look at attributed grammars as an algorithmic notation. The evaluation order of semantic actions is
then determined by the textual order of the actions in the grammar. There are also several compiler
generators, including Coco/R, that use this paradigm [John75, Gro88]. 

Coco/R is an improvement over an older version of this program (Coco [ReMö89]). The main difference
between Coco and Coco/R is that Coco/R produces recursive descent parsers instead of table-driven
parsers and that it integrates the scanner description and the parser description, thus avoiding interface
problems between the generated parts. A main nuisance of Coco was that all attributes had to be declared
in a global scope, making it necessary to stack attribute values from time to time. This was remedied in
Coco/R. Attributes can be declared local to productions. A similar extension of Coco, based on table-driven
parsing, has recently been described in [DoPi90].

The following example gives an impression of how a compiler description might look. A precise specifi-
cation of the description language follows in Section 2. The example shows the translation of variable
declarations. The task is to enter declared names into a symbol table and to compute addresses for
variables. One starts with a context-free EBNF grammar that is usually already at hand

VarDeclaration = Ident {"," Ident} ":" Type ";".

By simply writing down this rule, one already gets a parser that can check variable declarations syntactically.
To process them semantically as well,one has to think about how variable declarations are translated. This
requires the following considerations:

• What are the semantic values of VarDeclaration, Ident and Type? In other words, what does the
recognition of these symbols yield and what context information must be supplied in order to be able to
recognize them? This leads to the so-called attributes of the symbols. The attribute of an Ident is its
name, while the attribute of a Type is some node with type information. VarDeclaration does not



3

produce an attribute. Instead, it needs an attribute from its context; i.e., it needs to know the next free
address in the address space for variables. Attributes can be considered as (input or output) parameters
of syntax symbols. They are denoted as follows:

Ident <name>
Type <typ>
VarDeclaration <adr>

• The next question is: what actions are necessary to translate a construct? These actions are formulated
in a general purpose programming language (e.g., Oberon [Wirth89]) and are enclosed by the symbols
"(." and ".)". A semantic action may appear anywhere on the right-hand side of a production and is
executed at that point during parsing.

These consideration lead to an attributed production:

VarDeclaration <VAR adr: LONGINT>
(. VAR obj, obj1: SymTab.Object; typ: SymTab.Type;  n, a: LONGINT; 

  name: ARRAY 32 OF CHAR;.)
= Ident <name> (. obj := SymTab.Find(name); obj.link := NIL; n := 1 .)

{ "," Ident <name> (. obj1 := SymTab.Find(name);  obj1.link := obj; obj := obj1; INC(n) .)
} ":"
Type <typ> (. adr := adr + n* typ.size; a := adr;

WHILE obj # NIL DO DEC(a, typ.size); obj.adr := a; obj := obj.link END  .)
";".

Although the format is free, it is wise to shift syntactic parts to the left and semantic parts to the right. This
gives a nice separation between syntax and semantics and makes it immediately clear what actions are
executed upon recognition of a certain syntax symbol. Note that the production also contains local
declarations of variables needed in the semantic actions. Besides, globally declared or imported names can
also be accessed.

An attributed grammar can be viewed as a special purpose language for writing compilers (or similar
programs). It is a short-hand notation for the well-known recursive descent technique. Although it is not too
hard to implement a compiler front-end by hand, a notation like the above can have advantages:

• It is easy to read. Syntax and semantics are clearly separated. Semantic actions are not buried between
parsing statements.

• Routine activities like getting the next token from the scanner, handling alternatives, options and
iterations, or error-handling don't have to be written down explicitly but are derived from the grammar.

• It is faster and safer to implement a compiler in this high-level notation than in a general purpose
programming language. During language design several alternatives of a construct can be tried out and
their implementations can be prototyped.

• Irregularities in the grammar like circular productions or violations of the LL(1) property can go
undetected when the parser is implemented by hand. For a generator it is easy to check for these
irregularities.

Compiler generators enable programmers who are not experienced compiler writers to process little
languages. Examples for little languages are numerous in programming [Ben88], ranging from command
languages to descriptions of data structures on a file.



4

The rest of this report describes the input language Cocol/R, shows how the generator can be used, and
gives an overview of its implementation together with measurements. The appendix contains an example
of a compiler description for a small language. 

2. The Compiler Description Language Cocol/R

A compiler description can be viewed as a module consisting of imports, declarations and grammar rules
that describe the lexical and syntactical structure of a language as well as its translation into a target
language. The vocabulary of Cocol/R uses identifiers, strings and numbers in the usual way:

ident = letter {letter|digit}.
string = '"' {anyButQuote} '"' | "'" {anyButApostrophe} "'".
number = digit {digit}.

Upper case letters are distinct from lower case letters. Strings must not cross line borders. Keywords are

ANY  CASE  CHARACTERS  CHR  COMMENTS  COMPILER  CONTEXT  END  FROM  IGNORE

NESTED  PRAGMAS  PRODUCTIONS  SYNC  TO  TOKENS  WEAK

The following metacharacters are used to form EBNF expressions:

(   ) for grouping
{   }  for iterations
[   ]   for options
< >  for attributes
(.   .)  for semantic parts
= . | + - as explained below

Comments are enclosed in "(*" and "*)" and may be nested. The semantic parts may contain declarations or
statements in a general purpose programming language. The language actually used is implementation
dependent. This implementation uses Oberon.

2.1 Overall Structure

A compiler description is made up of the following parts

Cocol = "COMPILER" ident
arbitraryText
ScannerSpecification
ParserSpecification
"END" ident "." .

The name after the keyword COMPILER is the grammar name and must match the name after the keyword
END. The grammar name also denotes the topmost nonterminal (the start symbol). After the grammar name
arbitrary Oberon text may follow that is not checked by Coco/R. It usually contains imports of Oberon



5

modules and declarations of global objects (constants, types, variables, or procedures) that are needed in
the semantic actions later on. The remaining parts of the compiler description specify the lexical and
syntactical structure of the language to be processed.

2.2 Scanner Specification

A scanner has to read source text, skip meaningless characters, and recognize tokens which have to be
passed to the parser. Tokens may be classified as literals and token classes. Literals (e.g., "END", ":=",
etc.) are written as strings and denote themselves. They are introduced right in the productions and do not
have to be declared. Token classes (e.g., identifiers or numbers) have a certain structure that must be
declared by a regular expression in EBNF. There are usually many different instances of a token class (e.g.,
many different identifiers) which are all recognized as the same token.

ScannerSpecification =
{ "CHARACTERS" {SetDecl}
| "TOKENS" {TokenDecl}
| "PRAGMAS" {PragmaDecl}
| CommentDecl
| VariousDecl
}.

A scanner specification consists of 5 optional parts that may be written in arbitrary order.

Character sets. This section allows the declaration of names for character sets like letters or digits.
These names may be used in the other sections of the scanner specification.

SetDecl = ident "=" Set.
Set = BasicSet { ("+"|"-") BasicSet}.
BasicSet = ident | string | "CHR" "(" number ")" | "ANY".

SetDecl associates a name with a character set. Basic character sets are denoted as
string a set consisting of all characters in the string
ident the previously declared character set with this name
CHR(i) a character set consisting of a single element with ordinal value i
ANY the set of all characters

Character sets may be formed from basic sets by the operators
+ set union
- set difference

Examples
digit = "0123456789". the set of all digits
hexdigit = digit + "ABCDEF". the set of all hexadecimal digits
eol = CHR(13). end-of-line character
noDigit = ANY - digit. Any character that is not a digit



6

Tokens. A token is a terminal symbol for the parser but a syntactically structured symbol for the scanner.
This structure has to be described by a regular expression in EBNF.

TokenDecl = Symbol ["=" TokenExpr "."].
TokenExpr = TokenTerm {"|" TokenTerm}.
TokenTerm = TokenFactor {TokenFactor} ["CONTEXT" "(" TokenExpr ")"].
TokenFactor = Symbol | "(" TokenExpr ")" |  "[" TokenExpr "]" | "{" TokenExpr "}".
Symbol = ident | string.

Tokens may be declared in any order. A token declaration defines a symbol together with its structure.
Usually the symbol on the left-hand side of the declaration is an identifier. It is declared to stand for the
structure described on the right-hand side of the declaration. (For special purposes the symbol on the left-
hand side may also be a string, in which case no right-hand side may be specified; see Section 4.) 

The right-hand side of a token declaration specifies the structure of the token by a regular EBNF
expression. This expression may contain literals denoting themselves (e.g., "END") and names of
character sets (e.g., letter) denoting an arbitrary character from this set. It must not contain names of
previously declared tokens. The CONTEXT phrase in a TokenTerm means that the term is only
recognized when its right-hand context in the input stream is the TokenExpr specified in brackets. If the
right-hand side of a declaration is missing, no scanner is generated. This gives the programmer the chance
to provide a hand-written scanner (see Section 4).

Examples
ident = letter {letter | digit}.
real = digit {digit} "." {digit} ["E" ["+"|"-"] digit {digit}].
number = digit {digit} | digit {digit} CONTEXT ("..").

The CONTEXT phrase in the above example allows a distinction between reals (e.g., 1.23) and range
constructs (e.g., 1..2) that could otherwise not be scanned with a single character lookahead.

Note: The scanner exports two variables, pos and len, which are the source position and the length of the most

recently recognized token. It also exports a procedure GetName(↓pos, ↓ len, ↑sourceText) which can be used to

obtain the source text of the token at position pos having the length len. See also Section 3.

Pragmas. A pragma is a token that may occur anywhere in the input stream (e.g., end-of-line symbols or
compiler options). It would be too cumbersome to handle the many places in which they could occur in the
grammar. Therefore a special mechanism is provided to process pragmas without including them in the
productions. Pragmas are declared like tokens, but they may have an associated semantic action that is
executed whenever they are recognized by the scanner.

PragmaDecl = TokenDecl [SemAction].
SemAction = "(." arbitraryText ".)".



7

Example
option = "$" {letter} . (. Scanner.GetName(Scanner.pos, Scanner.len, str); i := 1;

WHILE i < Scanner.len DO
IF str[i] = "A" THEN …
ELSIF str[i] = "B" THEN …
END;
INC(i)

END .) 

Comments.  Comments are difficult (nested comments are even impossible) to specify with regular
expressions. This makes it necessary to have a special construct to express their structure. Comments are
declared by specifying their opening and their closing brackets. It is possible to declare several kinds of
comments. Comment brackets must not be longer than 2 characters.

CommentDecl = "COMMENTS" "FROM" TokenExpr "TO" TokenExpr ["NESTED"].

Examples
COMMENTS FROM "(*" TO "*)" NESTED
COMMENTS FROM "--" TO eol

Various. The following options serve to parameterize the generated scanner.

VariousDecl = "IGNORE" ("CASE" | Set).

IGNORE CASE specifies that lower case letters are treated like upper case letters in names.  IGNORE Set
specifies the set of meaningless characters that are to be skipped by the scanner (e.g., tabulators and eol).
Blank is meaningless by default.

2.3 Parser Specification

The parser specification is the main part of the compiler description. It contains the productions of an
attributed grammar specifying the syntax of the language to be recognized as well as its translation. The
productions may be given in any order. References to yet undeclared nonterminals are allowed. Any name
that is not declared as a terminal token is considered to be a nonterminal. There must be exactly one
production for every nonterminal. There must be a production for the start symbol (the grammar name).

ParserSpecification = "PRODUCTIONS" {Production}.
Production = ident [FormalAttributes] [LocalDecl] "=" Expression "." .
FormalAttributes = "<" arbitraryText ">".
LocalDecl = "(." arbitraryText ".)".
Symbol = ident | string.



8

Productions. A production may be considered as a procedure that parses a nonterminal. It has its own
scope for attributes and local objects and is made up of a left-hand side and a right-hand side which are
separated by an equal sign. The left-hand side specifies the name of the nonterminal together with its
formal attributes and local declarations. The right-hand side consists of a context-free EBNF expression
that specifies the structure of the nonterminal as well as its translation. The formal attributes are written like
formal parameters in Oberon. They are enclosed in angle brackets. In analogy to input parameters and
output parameters (variable parameters) we use the terms input attributes and output attributes. The local
declarations are arbitrary Oberon declarations enclosed in "(." and ".)". A production constitutes a scope for
its formal attributes and its locally declared objects. Terminals and nonterminals, globally declared objects,
and imported modules are visible in any production.

Example
Expression <VAR x: Item> (. VAR y: Item; operator: INTEGER; .)
= …  .

Expressions. An EBNF expression defines the context-free structure of some part of the source
language together with attributes and semantic actions that specify the translation of this part into the target
language.

Expression = Term {"|" Term}.
Term = Factor {Factor}.
Factor = ["WEAK"] Symbol [Attributes]

| SemAction
| "ANY" 
| "SYNC"
| "(" Expression ")"  |  "[" Expression "]"  |  "{" Expression "}".

Attributes = "<" arbitraryText ">".
SemAction = "(." arbitraryText ".)".
Symbol = ident | string.

Nonterminals may have attributes. They are written like actual parameters in Oberon and are enclosed in
angle brackets. If a nonterminal has formal attributes, every occurrence of this nonterminal must have a list
of actual attributes that correspond to the formal attributes according to the parameter compatibility rules of
Oberon. The conformance, however, is only checked when the generated parser module is compiled. A
semantic action is an arbitrary sequence of Oberon statements enclosed in "(." and ".)".

The symbol ANY denotes any terminal that is not an alternative of this ANY symbol. It can be used to
conveniently parse structures that contain arbitrary text. For example, the translation of a Cocol/R attribute
list looks as follows:

Attributes <VAR pos, len: LONGINT> =
"<" (. pos := Scanner.pos + 1 .)
{ANY}
">" (. len := Scanner.pos - pos .) .

In this example the closing angle bracket is an implicit alternative of the ANY symbol in curly brackets. The
meaning is that ANY matches any terminal except ">". Scanner.pos is the source text position of the most
recently recognized terminal. It is exported by the generated scanner (see Section 3).



 9

Error-handling. The programmer has to give some hints in order to allow Coco/R to generate good and
efficient error-handling. First, synchronization points have to be specified. A synchronization point is a
location in the grammar where especially safe terminals are expected that are hardly ever missing or
mistyped. When the generated parser reaches such a point, it adjusts the input to the next symbol that is
expected at this point. In most languages good candidates for synchronization points are the beginning of
a statement (where IF, WHILE, etc. are expected), the beginning of a declaration sequence (where
CONST, VAR, etc. are expected) and the beginning of a type (where RECORD, ARRAY, etc. are
expected). The end-of-file symbol is always among the synchronization symbols which guarantees that
synchronization terminates at least at the end of the source text. A synchronization point is specified by the
symbol SYNC.

Error-handling can further be improved by specifying which terminals are "weak" in a certain context. A
weak terminal is a symbol that is often mistyped or missing, such as the semicolon between statements. A
weak terminal is denoted by preceding it with the keyword WEAK. When the generated parser does not
find a terminal specified as weak, it adjusts the input to the next symbol that is either a legal successor of
the weak symbol or a symbol expected at any synchronization point (symbols expected at synchronization
points are considered to be very "strong", so that it makes sense that they never be skipped).

Example
StatementSeq = Statement {WEAK ";" Statement}.
Declaration = SYNC ("CONST" … | "TYPE" … | "VAR" … | …).

LL(1) requirements. Recursive descent parsing requires that the grammar of the parsed language
satisfies the LL(1) property. This means that at any point in the grammar the parser must be able to decide
on the basis of a single lookahead symbol which of several possible alternatives have to be selected. For
example, the following production is not LL(1):

Statement = ident ":=" Expression
| ident ["(" ExpressionList ")"].

Both alternatives start with the symbol ident and the parser cannot distinguish between them when it
comes to a statement and ident is the next input symbol. However, the production can easily be
transformed into

Statement = ident ( ":=" Expression  |  ["(" ExpressionList ")"] ).

where all alternatives start with distinct symbols. There are LL(1) conflicts that are not as easy to detect as in
the above example. For a programmer, it can be hard to find them if he has no tool to check the grammar.
The result would be a parser that in some situations selects a wrong alternative. Coco/R checks if the
grammar satisfies the LL(1) property and gives appropriate error messages that show how to correct any
violations.



10

3. Using Coco/R to Generate a Compiler

The attributed grammar is the central document of a compiler implementation with Coco/R. A user has to
perform the following tasks in order to write a compiler: 

1. Write an attributed grammar; 
2. Write semantic modules if necessary (import them in the attributed grammar); 
3. Use Coco/R to generate a scanner and a parser from the attributed grammar; 
4. Write a main module that calls the parser. 

The command

Coco.Compile name [ "/" {letter} ]

translates the compiler description in file name (with the grammar name G, say) into a scanner module
GS.Mod and a parser module GP.Mod. The following options may be specified

S prints the set of start and successor symbols for every nonterminal
X prints a cross-reference list of all terminals and nonterminals

3.1 Scanner Interface

DEFINITION GS;  (*generated scanner*)
IMPORT Files;
VAR

src: Files.File; (*source file; to be opened by the caller*)
pos: LONGINT; (*source file position of current token*)
line, col, len: INTEGER; (*line, column, and length of current token*)
Error: PROCEDURE (n: INTEGER; pos: LONGINT);  (*install error message procedure here*)

PROCEDURE Reset;
PROCEDURE Get(VAR sym: INTEGER);
PROCEDURE GetName(pos: LONGINT; len: INTEGER; VAR name: ARRAY OF CHAR);

END GS.

Reset is called by the parser to initialize the scanner. Note that the main module is responsible to open the
source file src prior to calling the parser. The parser then calls Get repeatedly to get the next token from
the source text. Information about the most recently recognized token can be found in the variables pos,
line, col, and len. The procedure GetName(↓ pos,↓  len, ↑ name) can be used to obtain the text of the
token at position pos with length len.

Error messages. For every syntax error the parser calls the procedure variable Error with an error number
and an error position as parameters. The user can install any procedure that prints a message or that saves
the error information for later output. Error can also be used to report semantic errors. (Make sure to use
semantic error numbers that do not interfere with syntax error numbers; e.g., start semantic error numbers
at 200.) The error numbers together with an explanatory text are appended to the generated parser in the
following form:



11

|  0: Msg("EOF expected")
|  1: Msg("ident expected")
|  2: Msg("string expected")
|  3: Msg("number expected")
…

This text can be copied to a procedure that prints textual error messages.

3.2 Parser Interface

DEFINITION GP;  (*generated parser*)
PROCEDURE Parse;

END GP.

The main program simply has to open the source file and call Parse in order to start the compilation. An
example of a simple main program is:

Texts.OpenScanner(s, Oberon.Par.text, Oberon.Par.pos); Texts.Scan(s);
IF s.class = Texts.Name THEN

GS.src := Files.Old(s.s);
GS.Error := own error message procedure;
IF GS.src # NIL THEN GP.Parse END;

END

3.3 Grammar Tests

Coco/R performs several tests to check if the grammar is well-formed. If one of the following error messages
is produced, no compiler parts are generated.

No production for X
The nonterminal X has been used, but there is no  production for it.

X cannot be reached
There is a production for nonterminal X, but X cannot be derived from the start symbol.

X cannot be derived to terminals
For example, if there is a production X = "(" X ")".

X --> Y, Y --> X
X and Y are nonterminals with circular derivations.

Tokens X and Y cannot be distinguished
The terminal symbols X and Y are declared to have the same structure, e.g.,

integer = digit {digit}.
real = digit {digit} ["." {digit}].

In this example, a digit string can be recognized as an integer or as a real.

The following messages are warnings. They may indicate an error but they may also describe desired
effects. The generated compiler parts are valid. If an LL(1) error is reported for a construct X one must be
aware that the generated parser will choose the first of several possible alternatives for X.



12

X deletable
X can be derived to the empty string, e.g., X = {Y}.

LL(1) error in X: Y is start of more than one alternative
Several alternatives in the production of X start with the terminal Y, e.g.,

Statement = ident ":=" Expression | ident [ActualParameters].
LL(1) error in X: Y is start and successor of deletable structure

Deletable structures are […] and {…}, e.g.,
qualident = [ident "."] ident.
Statement = "IF" Expression "THEN" Statement ["ELSE" Statement].

The ELSE at the start of the else-part may also be a successor of a statement. This LL(1) conflict is
known under the name "dangling else".

4. Hints for Advanced Users of Coco/R

Providing a Hand-Written Scanner

Scanning is a time-consuming task. The scanner generated by Coco/R is optimized, but it is implemented
as a deterministic finite automaton, which introduces some overhead. A manual implementation of the
scanner is slightly more efficient. For time-critical applications a programmer may want to generate a parser
but provide a hand-written scanner. This can be done by declaring all terminal symbols (including literals) as
tokens but without defining their structure by an EBNF expression, e.g.,

TOKENS
ident
number
"IF"
…

If a named token is declared without structure, no scanner is generated. Tokens are assigned numbers in
the order of their declaration; i.e., the first token gets the number 1, the second the number 2, etc. The
number 0 is reserved for the end-of-file symbol. The hand-written scanner has to return token numbers
according to this convention. It must have the interface described in Section 3.

Tailoring the Generated Compiler Parts to One's Needs

Using a generator usually increases productivity while at the same time flexibility is decreased. There are
always special cases that can be handled more efficiently in a hand-written implementation. A good tool
handles routine matters in a standard way but gives the user the chance to change them if he wants to.
Coco/R generates the scanner and the parser from source texts (so-called frames) stored under the names
Scanner.FRM and Parser.FRM. It does so by inserting grammar-specific parts into these frames. The
programmer may edit the frames and may therefore change any of the internally used algorithms. For
example, he can Implement a different buffering scheme for input characters.



13

Accessing the Lookahead Token

Section 3 specified the interface of the generated scanner. This interface is not complete. Actually, the
scanner also exports information about the lookahead token:

nextPos: LONGINT; (*source file position of the lookahead token*)
nextLine, nextCol: INTEGER; (*line and column number of the lookahead token*)

These variables refer to the most recently scanned token (the lookahead token), while the variables pos,
line and col refer to the most recently parsed token.

Controlling the Parser by Semantic Information

Ideally, syntax analysis should be independent of semantic analysis (symbol table handling, type checking,
etc.). Some languages like Ada and C, however, have constructs that can only be distinguished if one also
considers semantic information, e.g., the type of the parsed symbols. Even Oberon has constructs that
cannot be parsed by looking at their syntax alone. For example, a designator is defined in Oberon as

Designator = Qualident {"." ident | "^" | "[" ExprList "]" | "(" Qualident ")" }.

where x(T) means a type guard (i.e., x is asserted to be of type T). A designator may be used in a statement

Statement = … | Designator ["(" ExprList ")"] | …  .

Here x(T) can be interpreted as a designator x (a procedure name) and a parameter T. The two
interpretations of x(T) can only be distinguished by looking at the type of x. If it is a procedure then the
opening bracket is the start of a parameter list, otherwise the bracket belongs to a type guard.

Cocol/R allows control of the parser from within semantic actions to a certain degree. A designator, for
example, can be processed in the following way:

Designator <VAR x: Item> =
Qualident <x>
{ …
| (. IF x is procedure THEN RETURN END .)

"(" Qualident <y> ")" (. process type guard .)
} .

When an opening bracket is seen after a Qualident, the alternative starting with an opening bracket is
selected. The first semantic action of this alternative checks for the type of x. If x is a procedure, the parser
returns from the production and continues in the Statement production.



14

5. Implementation

Coco/R was written in Oberon on a Ceres workstation. There is also a Modula-2 version for Macintosh
computers. A preliminary version of Coco/R was implemented as a master's thesis ([Senn89]). Coco/R was
used for its own implementation. Like any compiler, it consists of a scanner (CRS), a parser (CRP), a table
handler (CRT), and two  modules for output generation, one for the scanner (CRA) and one for the parser
(CRX). During parsing the scanner description is transformed into a non-deterministic finite automaton and
the attributed grammar is transformed into a graph. These data structures are used for grammar tests and
for the generation of the two source modules.

Coco

CRS

CRP

CRT

CRACRX

5.1 Scanner Generation

During parsing of the compiler description, the token declarations are translated into a syntax graph from
which a non-deterministic finite automaton is generated. In a second step, this automaton is made
deterministic. The algorithms for the manipulation of the automaton are described in [Möss86]. Figure 1
sketches this process.

CHARACTERS
   digit = "0123456789".
   octdigit = "01234567".

TOKENS
   decimal = digit {digit}.
   octal = octdigit {octdigit} "B".

digitdigit

octdigit octdigit

"B"

decimal :

regular expression syntax graph

non-deterministic automaton deterministic automaton

octal :

ε

1 1digit {8, 9}

{8, 9}

B Boctdigit octdigit

octdigit octdigit

digit digit2 2

3 4 4[2, 3]

Fig. 1   Transformation of regular expressions into a deterministic finite automaton

The automaton is not generated directly from the regular expressions but from a syntax graph. This allows



15

making it more deterministic from the beginning, thus simplifying the later algorithms. Figure 1 shows that
tokens may have very similar structures, differing only in their last characters. These structures are
automatically stripped of any disambiguity. The programmer does not have to take care of making the
beginnings of tokens distinct. Even very complicated structures can be processed like the various kinds of
numeric constants in Modula-2 (Figure 2; final states are denoted by bold circles):

integer =
   digit {digit}
|  digit {digit} CONTEXT ("..")
|  digit {hexdigit} "H"
|  octdigit {octdigit} "B".

char =
   octdigit {octdigit} "C".

real =
   digit {digit} "." {digit}
   ["E" ["+"|"-"] digit [digit]].

octdigit

hexdigit

hexdigit

hexdigit

C

B

H

H

H

H

E
E

digit

digit

digit

{+, -}

digit

digit

.

.

.

H

octdigit

digit

1

2 3

4 5

7

6

8

9

10

11

12 13

14

{8,9}

{A,D,E,F}

{A,B,C}
{D,E,F}

{8,9}

Fig.2   Automaton for the various kinds of numeric constants in Modula-2

If speed is important, a finite automaton is not the best possible implementation of a scanner. It would be
more efficient to implement the recognition of tokens as ordinary procedures like in a hand-written scanner.
However, if one looks at the Figure 2, one can imagine that it is not easy to generate such a scanner
automatically. On the other hand, an automaton is space-efficient. Therefore we decided to generate the
scanner as an automaton. To make it as efficient as possible, the automaton is not table-driven but
implemented in code. For the token declarations

ident = letter {letter|digit}.
number = digit {digit}.

and the occurrence of the literals "IF", "THEN", "END", "<", and "<=" in the productions of the grammar the
automaton of Figure 3 is generated. The textual representation of token classes like ident or number can
be obtained via the procedure GetName(↓ pos, ↓ len, ↑ sourceText) where pos and len are the
position and length of the token in the source file. Note, that keywords cannot be handled by the
automaton since they have the same structure as identifiers. This fact is taken into account by Coco/R: Any
literal that matches a declared token is stored in a literal list. Later, when an identifier is recognized, it is
checked whether it is a literal (CheckLiteral), and if so, the literal's token number is returned. Comments
are not handled by the automaton. They are recognized by a special procedure.



16

letter
digit

digit

letter Get(VAR sym: INTEGER)

END Get;

digit

< =

0 1

2

3
…

4

…
state := startState[ch]; pos := chPos; len := 0;
LOOP
   NextCh; INC(len);
   CASE state OF
     1: IF (ch>="A") & (ch<="Z") OR (ch>="a") & (ch<="z") 
         OR (ch>="0") & (ch<="9") THEN state := 1
         ELSE sym := ident; CheckLiteral; RETURN
         END
   | 2: IF (ch>="0") & (ch<="9") THEN state := 2
         ELSE sym := number; RETURN
         END
   | 3: IF ch = "=" THEN state := 4
         ELSE sym := lss; RETURN
         END
   | 4: sym := leq; RETURN
   …
   END
END

Fig. 3   Implementation of an automaton

The most time-consuming task in scanning is reading the source text. The scanner can be speeded up
significantly if reading can be made faster. To read a text character by character is usually slower than to
read it in blocks that correspond to disk sectors. With the large memories available today, it is even possible
to read the whole source text into memory at once. In the Oberon system this is more than three times
faster than reading it character by character. Even large Oberon programs rarely exceed 40 kilobytes in
source code. With several megabytes of memory available, this "waste" of 40 kilobytes seems justified if
scanning speed can be improved so drastically (the overall run time of the compiler is improved by 30%).

Having the whole source text in memory has yet another advantage: the source text can be used as a name
list. The text of token classes, like identifiers, no longer has to be copied to a separate name list but can
remain where it is. One simply has to remember its position and its length. This idea is in accordance with
the principle that during scanning every input character should be "touched" as little as possible [Waite86].

Another advantage of this technique is that it permits the backup of the input pointer to any previous
position. This is useful for handling tokens with CONTEXT phrases in Cocol/R. To recognize such tokens
the right-hand context has to be analyzed, too. After the token and its context have been scanned, the
input pointer is simply decreased by the length of the CONTEXT phrase, so that this text will be read by the
scanner again.



17

5.2 Parser Generation

The productions of the attributed grammar are translated into procedures of a recursive descent parser.
However, it is not possible to generate the parser on the fly while the grammar is analyzed since certain sets
of terminal symbols are required at various locations in the parsing procedures. These sets can only be
computed when the whole grammar is known. Therefore, the productions are first translated into syntax
graphs, then the symbol sets are computed, and finally the parsing procedures are generated from the
graphs. The syntax graphs are also used for grammar tests (completeness, redundancy, LL(1) property).

Syntax graphs. A node is generated for every symbol in the grammar and for every semantic action. A
sequence of symbols and actions is translated into a sequence of nodes. A semantic action node contains
the position and the length of the action in the source text. Alternatives, options and iterations are
modelled by special nodes of the following form

to successor to successor

option,
iterationalternative

to start node of alternative
to next branch

to start node of inner structure

A production like

Expression <VAR x: OGT.Item> (. VAR y: OGT.Item; op: INTEGER .)
= SimExpr <x>

[ Relop <op> (. IF x.typ.form = Bool THEN OGE.MOp(op, x) END .)
SimExpr <y> (. OGE.Op(op, x, y) .)

| "IN" SimExpr <y> (. OGE.In(x, y) .)
| "IS" (. IF x.mode >= Typ THEN err(112) END .)

qualident <y> (. IF y.mode = Typ THEN OGE.TypTest(x, y) ELSE err(52) END .)
].

is translated into the following graph

opt

alt

alt

alt

SimExprExpression ⇒

SimExpr

SimExpr

qualident

RelOp sem

sem

sem

sem

sem

IN

IS

Fig. 4  Syntax graph for the generation of parsing procedures



18

Note that this kind of graphs is different from the syntax graphs used for scanner generation (Figure 1).
Alternatives, options and iterations are represented by special nodes. This makes the graphs better suited
for the generation of recursive descent parsers. Having the graphs and the symbol sets, it is easy to
generate parsing procedures. A sequence of nodes is translated into a sequence of parsing constructs.
Semantic actions are simply copied from the source text without modification. The following table shows
that every grammar item can be replaced mechanically by the equivalent parsing item.

grammar item parsing item
terminal t Expect(t)
nonterminal nt <a, b> nt(a, b)
semantic action (. anyText .) anyText

Terminals are recognized by the procedure

PROCEDURE Expect(s: INTEGER);
BEGIN IF sym = s THEN Get ELSE Error(s) END
END Expect;

The procedure Get requests the next input token from the scanner and stores it in the global variable
sym. It is also responsible for filtering out pragmas.

PROCEDURE Get;
BEGIN

LOOP Scanner.Get(sym);
IF sym is pragma THEN Handle it ELSE EXIT END

END
END Get;

Alternatives, options and iterations are translated into control structures. Whenever possible, redundant
checks are eliminated. The following procedure is generated from the graph in Figure 4.

PROCEDURE Expression (VAR x: OGT.Item);
VAR y: OGT.Item; op: INTEGER;

BEGIN 
SimExpr(x);
IF sym IN {eql, neq, lss, leq, gtr, geq, in, is} THEN

IF sym IN {eql, neq, lss, leq, gtr, geq} THEN
Relop(op); IF x.typ.form = Bool THEN OGE.MOp(op, x) END;
SimExpr(y); OGE.Op(op, x, y);

ELSIF sym = in THEN
Get; SimExpr(y); OGE.In(x, y);

ELSE
Get; IF x.mode >= Typ THEN err(112) END;
qualident(y); IF y.mode = Typ THEN OGE.TypTest(x, y) ELSE err(52) END;

END
END

END Expression;



19

A more interesting example is the following production, which also contains iterations. (For brevity,
semantic actions are not shown.)

FormalParameters = "(" [ FormPar { ";" FormPar} ] ")"   [":" qualident]. 

The corresponding syntax graph is

opt opt

iter

( )

FormPar

FormPar

qualident

;

:

FormalParameters ⇒

Dotted arrows denote pointers to the successors of inner structures. They help in the computation of start
and successor sets. The graph is translated into the following procedure:

PROCEDURE FormalParameters;
BEGIN

Expect(leftpar);
IF sym IN {ident, var} THEN

FormPar;
WHILE sym = semicolon DO Get; FormPar END

END;
Expect(rightpar);
IF sym = colon THEN Get; qualident END

END FormalParameters;

5.3 Error Recovery

Good and efficient error recovery is difficult in recursive descent parsers since little information about the
parsing process is available when an error occurs. What has to be done in case of an error:

1. Find all symbols with which parsing can be resumed at a certain location in the grammar reachable from
the error location (recovery symbols).

2. Skip the input up to the first symbol that is in the recovery set.
3. Drive the parser to the location where the recovery symbol can be recognized. 
4. Resume parsing from there.

In recursive descent parsers, information about the parsing location and about the expected symbols is
only implicitly contained in the parser code (and in the procedure call stack) and cannot be exploited for
error recovery.  One method to overcome this is to compute the recovery set dynamically during parsing.
Then, when an error occurs, the recovery symbols are already known and all that one has to do is to skip
erroneous input and to "unroll" the procedure stack up to a legal continuation point [Wirth76]. This
technique, although systematically applicable, slows down error-free parsing and inflates the parser code.



20

Another technique has therefore been suggested in [Wirth86]. Recovery takes place only at certain
synchronization points in the grammar. Errors at other points are reported but cause no recovery. Parsing
simply continues up to the next synchronization point where the grammar and the input are synchronized
again. This requires the designer of the grammar to specify synchronization points explicitly – not a very
difficult task if one thinks for a moment. The advantage is that no recovery sets have to be computed at run
time. This makes the parser small and fast.

Synchronization points. In Cocol/R a synchronization point is specified by the keyword SYNC (see
Section 2.3). A good synchronization point is a location in the grammar where particularly safe symbols (like
keywords) are expected and that is often visited by the parser. Typical candidates are the beginning of a
statement, the beginning of a declaration or the beginning of a structured type. A synchronization point is
translated into a loop that skips all symbols not expected at this point (except end-of-file). The set of these
symbols can be precomputed at parser generation time. The following example shows two synchronization
points and their counterparts in the generated parser.

production generated parsing procedure

Declarations =
SYNC WHILE ~(sym IN {const, type, var, proc, begin, end, eof}) DO

Error(…); Get
END;

{  WHILE sym IN {const, type, var, proc} DO
( "CONST" {ConstDecl ";"} IF sym = const THEN Get; … 
| "TYPE" {TypeDecl ";"} ELSIF sym = type THEN Get; …
| "VAR" {VarDecl ";"} ELSIF sym = var THEN Get; …
| ProcDecl ELSE ProcDecl
) END;

  SYNC WHILE ~(sym IN {const, type, var, proc, begin, end, eof}) DO
Error(…); Get

END
}. END

To avoid spurious error messages, an error is only reported when a certain amount of text has been
correctly parsed since the last error.

Weak symbols. The knowledge of synchronization points is already sufficient to recover from errors.
However, recovery can be improved if the parser also knows about "weak" symbols that are often mistyped
or missing (like semicolon). These symbols are marked in the grammar by the keyword WEAK (see Section
2.3). If the parser tries to recognize a weak symbol and finds it missing, it reports an error and skips the input
until a legal successor of the symbol is found (or a symbol that is expected at any synchronization point; this
is a useful heuristic that avoids skipping safe symbols). The following example shows the translation of a
weak symbol.

generated parsing code
Statement =

ident Expect(ident);
WEAK ":=" Weak(becomes, {start symbols of Expression});
Expression . Expression



21

The procedure Weak is implemented as follows

PROCEDURE Weak(s: INTEGER; expected: Set);
BEGIN

IF sym = s THEN Get
ELSE 

Error(s); WHILE sym ∉  expected ∪  {symbols expected at synchronization points} DO Get END
END

END Weak;

Weak symbols give the parser another chance to synchronize in case of an error. Again, the set of
expected symbols can be precomputed at parser generation time and cause no run time overhead in error-
free parsing.

When an iteration starts with a weak symbol, this symbol is called a weak separator and is handled in a
special way. If it cannot be recognized, the input is skipped until a symbol that is contained in one of the
following three sets is found:

α symbols that may follow the weak separator
β symbols that may follow the iteration
γ symbols expected at any synchronization point (including eof)

The following example shows the translation of a weak separator

generated parsing procedure
StatSequence =

Stat Stat;
{ WEAK ";" Stat}. WHILE WeakSep(semicolon, α, β) DO Stat END

In this example, α  is the set of start symbols of a statement (ident, IF, WHILE, etc.) and β is the set of
successors of a statement sequence (END, ELSE, UNTIL, etc.). Both sets can be precomputed at parser
generation time. WeakSep is implemented as follows:

PROCEDURE WeakSep(s: INTEGER; sySucc, iterSucc: Set): BOOLEAN;
BEGIN

IF sym = s THEN Get; RETURN TRUE
ELSIF sym ∈  iterSucc THEN RETURN FALSE
ELSE Error(s); WHILE sym ∉  sySucc ∪  iterSucc ∪  γ  DO Get END;

RETURN sym ∈  sySucc  (*TRUE means "s inserted"*)
END

END WeakSep;

The observant reader may have noticed that the set β contains the successors of a statement sequence in
any possible context. This set may be too large. If the statement sequence occurs within a repeat
statement, only UNTIL is a legal successor, but not END or ELSE. We accept this fault, since it allows us to
precompute the set β at parser generation time. The occurrence of END or ELSE is very unlikely in this
context and can only lead to incorrect synchronization, causing the parser to synchronize again.



22

The following example demonstrates that our method yields good error recovery. We generated an
Oberon compiler and compiled the following erroneous program taken from [Wirth86]. The parser
recovered surprisingly well.

MODULE Error;
CONST M := 10, N = 100  X = 10;

***         ^ "=" expected
***              ^ ";" expected
***                         ^ ";" expected

VAR , a, b, c;
***     ^ unexpected symbol in Block

PROCEDURE P;
BEGIN
  s := 0; a = 5 * (b - 1 END;

***             ^ error in Stat
***                      ^ error in Stat
***                             ^ ident expected

BEGIN
  > a > b;

***   ^ unexpected symbol in Stat
***       ^ error in Stat

  WHILE a DO
    BEGIN > b; - c := 0;

***     ^ unexpected symbol in Stat
***           ^ unexpected symbol in Stat
***                ^ unexpected symbol in Stat

    WHILE a > 0 BEGIN
***                 ^ "DO" expected

      IF ODD a c := c * - b;
***              ^ error in Factor
***                ^ error in Stat
***                         ^ error in Factor

      b := 2 * b a := a / 2
***                  ^ error in Factor

    END;
    P := 0; P; 666;

***                ^ unexpected symbol in Stat
  END .

***       ^ ";" expected
***        ^ "END" expected

The error messages are kept short and simple. This is due to our conviction that experienced programmers
do not need a detailed explanation of what actions the parser performed in order to recover from the error.
In almost all cases it is sufficient to point to the error location and to give a rough hint.

The proposed error recovery technique is cheap. It costs only a check at every synchronization point and
therefore does not slow down error-free parsing. The code for error handling makes up 10% of the parser
code (without semantic actions).

Oberon parser without error handling  3019 Bytes (object code)
Error handling procedures (fixed size) 248 Bytes
Synchronization points, weak symbols 81 Bytes



23

6. Measurements

We compared an Oberon compiler generated by Coco/R with a manually implemented Oberon compiler.
The back-end modules of both compilers are the same. Only the scanner and the parser are different. We
measured the time to compile a 867-line Oberon program (7169 tokens or 24254 characters) on a Ceres-2
workstation with a NS32532 processor running at 25 MHz.

Original compiler 3.9 sec
Generated compiler 3.0 sec

The generated compiler is 23 % faster than the original compiler. This is due to the fact that the generated
compiler reads the source text into main memory at once, while the original compiler reads it character by
character. Without this improvement the generated compiler is about 10% slower than the original one.
Scanning and parsing contribute to the overall run time of the generated compiler in the following way:

Scanning 0.61 sec 20 %
Parsing 0.12 sec 4 %

This gives a compilation speed of

Scanning 11 625  tokens/sec
Parsing 51 127  tokens/sec
Total compilation speed 2 395  tokens/sec

Comparing the object code of the two compilers yields the following measures:

Original compiler Generated compiler
Scanner 3 672 Bytes 3 944 Bytes + 7%
Parser 11 740 Bytes 12 236 Bytes + 4%
(incl. semantic actions)

7. Summary

Attributed grammars, when regarded as an algorithmic notation, are a special purpose language to describe
translation processes. They serve three purposes:

• Specification. A translator can be specified and designed this way before it is implemented in a
conventional programming language.

• Documentation. An attributed grammar is a concise documentation of a translation process. It contains
the same information as the program that implements the translator but in more compact form.

• Implementation. If a tool like Coco/R is available, an attributed grammar is already the implementation of
the translator.

Attributed grammars can be used to specify all kinds of programs that process a single stream of structured
input data. They can be applied not only to proper compilers but also to compiler-like programs like cross-
reference generators, pretty printers or complexity analyzers and even to tasks that do not fall in the
traditional scope of compiler construction, like the processing of data files that describe pictures, formatted



24

text or database information.

Among the advantages of using a tool like Coco/R are a fast and safe implementation of translators, high
flexibility in experimenting with a language design, and a translator description that is more concise and
more readable than an implementation in a conventional programming language. The effort to learn the
description language is small, since semantic parts are written in a familiar programming language and
syntactic parts are based on the well-known formalism of EBNF grammars. The translators generated by
Coco/R are fast enough to compete with production-quality compilers.



25

Appendix A   Cocol/R Grammar

Cocol = "COMPILER" ident
      { ANY }
      { Declaration }
      "PRODUCTIONS"
      { ident [Attributes] [SemText] "=" Expression "."} 
      "END" ident ".".
Declaration =  "CHARACTERS" { SetDecl }
    | "TOKENS"     { TokenDecl }
    | "PRAGMAS"    { PragmaDecl }
    | "COMMENTS" "FROM" TokenExpr "TO" TokenExpr ["NESTED"]
    | "IGNORE" ( "CASE" | Set ).

SetDecl = ident "=" Set ".".
Set = SimSet { "+" SimSet | "-" SimSet }.
SimSet = ident | string | "CHR" "(" number ")" | "ANY".

TokenDecl = Symbol ["=" TokenExpr "."].
TokenExpr = TokenTerm { "|" TokenTerm }.
TokenTerm = TokenFactor { TokenFactor} [ "CONTEXT" "(" TokenExpr ")" ].
TokenFactor = ( Symbol |  "(" TokenExpr ")" |  "[" TokenExpr "]" |  "{" TokenExpr "}" ).

PragmaDecl = TokenDecl [SemText].

Expression = Term { "|" Term }.
Term = Factor { Factor}.
Factor =   ( ["WEAK"] Symbol [Attributes]
   | SemText
   | "ANY"
   | "SYNC"
   | "(" Expression ")"  |  "[" Expression "]"  |  "{" Expression "}" 
   ).
Symbol =  ident | string.
Attributes = "<" { ANY } ">".
SemText = "(." { ANY } ".)".



26

Appendix B   Sample Attributed Grammar in Cocol/R

The following attributed grammar describes a compiler for a simple programming language. It uses a symbol
table handler (TL) and a code generator (TC) that generates code for a stack machine. These two modules
are not described further. The purpose of this grammar is to give a coherent example of an attributed
grammar. It is not necessary for the reader to understand the translation process in all details, although the
semantic actions in this grammar are rather similar to actions contained in any compiler.

COMPILER Taste

(*-------------------------------------- imports and global declarations -----------------------------------------*)
IMPORT TL (*table handler*), TC (*code generator*);

CONST
  plus = 0; minus = 1; times = 2; slash = 3; equ = 4; lss = 5; gtr = 6; (*operators*)
  undef = 0; int = 1; bool = 2;  (*types*)
  vars = 0; procs = 1;  (*object kinds*)
  ADD = 0; SUB = 1; MUL = 2; DIVI = 3; EQU = 4; LSS = 5; GTR = 6; (*machine instructions*)
  LOAD = 7; LIT = 8; STO = 9; CALL = 10; RET = 11; RES = 12;
  JMP = 13; FJMP = 14; HALTc = 15; NEG = 16; READ = 17; WRITE = 18;

TYPE
Name = ARRAY 32 OF CHAR;

PROCEDURE Err(nr: INTEGER);
BEGIN TasteS.Error(100 + nr, TasteS.pos) END Err;

PROCEDURE StringToVal(s: ARRAY OF CHAR; VAR val: INTEGER);
VAR i: INTEGER;

BEGIN
  val:=0; i := 0;
  WHILE s[i] # 0X DO val := 10 * val + ORD(s[i]) - ORD("0"); INC(i) END
END StringToVal;
  

(*------------------------------------------ scanner specification ---------------------------------------------------*)
CHARACTERS
  letter = "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz".
  digit = "0123456789".
  eol = CHR(13).
  tab = CHR(9).

TOKENS
  ident = letter {letter | digit}.
  number  = digit {digit}.

IGNORE eol + tab

COMMENTS FROM "(*" TO "*)" NESTED



27

(*------------------------------------------------------- parser specification ----------------------------------------------------------*)
PRODUCTIONS

Taste                                  (. VAR name, progName: Name; obj: TL.Object; .)
= "PROGRAM" 

Ident<progName> ";"        (. TC.progStart := TC.pc .)
  Body
  Ident<name> "."                      (. IF name # progName THEN Err(0) END; TC.Emit(HALTc) .).
(*-----------------------------------------------------------------------------------------------------------------------------------------------*)
Body                                   (. VAR name, name1; Name; fix, type: INTEGER; obj: TL.Object; .)
=                                      (. TL.EnterScope;   fix := TC.pc + 1; TC.Emit2(JMP,0) .)
  { "VAR" 
    {  Ident<name> ":"                  (. obj := TL.NewObj(name, vars) .)
         TypeId<obj^.type> ";"             
    }

| "PROCEDURE" 
Ident<name> ";"        (. obj := TL.NewObj(name, procs);  obj^.adr := TC.pc .)
Body 
Ident<name1> ";"                   (. TC.Emit(RET);  IF name # name1 THEN Err(0) END .)

}
  "BEGIN"                              (. TC.Fixup(fix); TC.Emit2(RES, TL.DataSpace()) .)
  StatSeq 
  "END"                                (. TL.LeaveScope .).
(*-----------------------------------------------------------------------------------------------------------------------------------------------*)
TypeId<VAR type: INTEGER>
=  "INTEGER"                          (. type := int .)
| "BOOLEAN"                          (. type := bool .).
(*-----------------------------------------------------------------------------------------------------------------------------------------------*)
StatSeq = Stat {";" Stat}.
(*-----------------------------------------------------------------------------------------------------------------------------------------------*)
Stat                                   (. VAR name: Name; type, fix, fix2, loopstart: INTEGER; obj: TL.Object;  
= [  Ident<name>                        (. obj := TL.Obj(name) .)
    ( ":" "="                          (. IF obj^.kind # vars THEN Err(4) END .)
      Expression<type> (. IF type # obj^.type THEN Err(2) END;
                                          TC.Emit3(STO, TL.curLevel - obj^.level, obj^.adr) .)
    |                                  (. IF obj^.kind # procs THEN Err(5) END;
                                          TC.Emit3(CALL, TL.curLevel - obj^.level, obj^.adr) .)
    )

| "IF" Expression<type> (. IF type # bool THEN Err(3) END; fix := TC.pc + 1; TC.Emit2(FJMP, 0) .)
    "THEN" StatSeq
    [ "ELSE"                           (. fix2 := TC.pc + 1; TC.Emit2(JMP, 0); TC.Fixup(fix); fix := fix2 .)
        StatSeq 
    ]
    "END"                              (. TC.Fixup(fix) .)

| "WHILE"                            (. loopstart := TC.pc .)
    Expression<type>                   (. IF type # bool THEN Err(3) END;  fix := TC.pc + 1; TC.Emit2(FJMP, 0) .)
    "DO" StatSeq "END" (. TC.Emit2(JMP, loopstart); TC.Fixup(fix) .)

| "READ" Ident<name> (. obj := TL.Obj(name); IF obj^.type # int THEN Err(1) END;
                                          TC.Emit3(READ, TL.curLevel - obj^.level, obj^.adr) .)

| "WRITE" Expression<type>  (.  IF type # int THEN Err(1) END; TC.Emit(WRITE) .)
] .

(*-----------------------------------------------------------------------------------------------------------------------------------------------*)
Expression<VAR type: INTEGER> (. VAR type1, op: INTEGER; .)
= SimExpr<type>
  [ RelOp<op> SimExpr<type1> (. IF type # type1 THEN Err(2) END; TC.Emit(op); type := bool .)
    ] .
(*-----------------------------------------------------------------------------------------------------------------------------------------------*)



28

RelOp<VAR op: INTEGER>
= "="                                (. op := equ .)
| "<"                                (. op := lss .)
| ">"                                (. op := gtr .).
(*-----------------------------------------------------------------------------------------------------------------------------------------------*)
SimExpr<VAR type: INTEGER> (. VAR type1, op: INTEGER; .)
= Term<type>
  { AddOp<op> Term<type1> (. IF (type # int) OR (type1 # int) THEN Err(1) END; TC.Emit(op) .)
    }.
(*-----------------------------------------------------------------------------------------------------------------------------------------------*)
AddOp<VAR op: INTEGER>
= "+"                                (. op:=plus .)
  | "-"                                (. op:=minus .).
(*-----------------------------------------------------------------------------------------------------------------------------------------------*)
Term<VAR type: INTEGER> (. VAR type1, op: INTEGER; .)
= Factor<type>
  { MulOp<op> Factor<type1>   (. IF (type # int) OR (type1 # int) THEN Err(1) END; TC.Emit(op) .)
  }.
(*-----------------------------------------------------------------------------------------------------------------------------------------------*)
MulOp<VAR op: INTEGER>
= "*"                                (. op := times .)
| "/"                                (. op := slash .).
(*-----------------------------------------------------------------------------------------------------------------------------------------------*)
Factor<VAR type: INTEGER>  (. VAR name: Name; val, n: INTEGER; obj: TL.Object; .)
= (  Ident<name>  (. obj := TL.Obj(name); type := obj^.type;
                                          IF obj^.kind = vars THEN  

TC.Emit3(LOAD, TL.curLevel - obj^.level, obj^.adr)
                                          ELSE Err(4)
                                          END .)
  | "TRUE"                             (. TC.Emit2(LIT, 1); type := bool .)
  | "FALSE"                            (. TC.Emit2(LIT, 0); type := bool .)
  | number                        (. TasteS.GetName(TasteS.pos, TasteS.len, name); 

StringToVal(name, n);  TC.Emit2(LIT, n); type:=int .)
  | "-" Factor<type>                   (. IF type # int THEN Err(1); type := int END; TC.Emit(NEG) .)
  ).
(*-----------------------------------------------------------------------------------------------------------------------------------------------*)
Ident <VAR name: Name> =

ident (. TasteS.GetName(TasteS.pos, TasteS.len, name) .).

END Taste.



29

References

[Ben88] J.Bentley: More Programming Pearls. Addison-Wesley 1988

[DoPi90] H.Dobler, K.Pirklbauer: Coco-2 – A New Compiler-Compiler. Technical Report TR 90/1, Institut
für Informatik, Universität Linz

[GaGi84] H.Ganzinger, R.Giegerich: Attribute Coupled Grammars. SIGPLAN Notices 19 (1984), 6, 157-
170

[Gro88] J.Grosch: Generators for High-Speed Front-Ends. Lecture Notes in Computer Science 371,
Springer Verlag, 1988

[KHZ82] U.Kastens, B.Hutt, E.Zimmermann: GAG: A Practical Compiler Generator. Lecture Notes in
Computer Science 141, Springer Verlag, 1982

[John75] S.C.Johnson: YACC – Yet another Compiler-Compiler. Tech.Report No 32, Bell Laboratories,
July 1975

[Knu68]  D.E.Knuth: Semantics of Context-Free Languages. Mathematical Systems Theory 2 (1968),
127-145

[Möss86] H.Mössenböck: Compilererzeugende Systeme für Mikrocomputer. Ph.D. thesis, Universität
Linz, 1986

[Räi83]  K.-J. Räihä, et al.: Revised Report on the Compiler Writing System HLP78. Report A-1983-1,
Department of Computer Science, University of Helsinki

[ReMö89] P.Rechenberg, H.Mössenböck: A Compiler Generator for Microcomputers. Prentice Hall 1989

[Senn89] R.Sennhauser: Übersetzung attributierter Grammatiken. Diploma thesis, ETH Zurich, 1989

[Waite86] W.M.Waite: The Cost of Lexical Analysis. Software – Practice and Experience 16 (1986), 5, 
473-488

[Wirth76] N.Wirth: Algorithms + Data Structures = Programs. Prentice-Hall, 1976

[Wirth86] N.Wirth: Compilerbau. 4th edition. Teubner Studienbücher, 1986

[Wirth89] N.Wirth: The Programming Language Oberon. Report 111, ETH Zurich, September 1989


	Abstract
	Contents
	1. Introduction
	2. Compiler Description Language Cocol/R
	2.1. Overall Structure
	2.2. Scanner Specification
	Character Sets
	Tokens
	Pragmas
	Comments
	Various

	2.3. Parser Specification
	Productions
	Expressions
	Error-handling
	LL(1) Requirements


	3. Using Coco/R to Generage a Compiler
	3.1. Scanner Interface
	3.2. Parser Interface
	3.3. Grammar Tests

	4. Hints for Advanced Users of Coco/R
	Providing a Hand-Written Scanner
	Tailoring the Generated Compiler Parts to One's Needs
	Accessing the Lookahead Token
	Controlling the Parser by Semantic Information

	5. Implementation
	5.1. Scanner Generation
	5.2. Parser Generation
	5.3. Error Recovery

	6. Measurements
	7. Summary
	Appendix A. Coco/R Grammar
	Appendix B. Sample Attributed Grammar in Coco/R
	References

